< Return to Video

Introduktion til invers-sinus

  • 0:00 - 0:04
    Hvis jeg kommer hen til dig
    på gaden og siger fortæl mig
  • 0:04 - 0:07
    -- det skal vist ikke være så tykt --
  • 0:07 - 0:12
    hvad er sin(π/4)?
  • 0:12 - 0:15
    Naturligvis antager vi,
    at vi snakker om radianer.
  • 0:15 - 0:20
    Du ved allerede, hvad svaret er,
    eller du kan tegne en enhedscirkel.
  • 0:20 - 0:22
    Det er måske ikke den pæneste enhedscirkel
  • 0:22 - 0:23
    men du kan se, hvad jeg mener.
  • 0:23 - 0:27
    Du finder π/4 radianer,
  • 0:27 - 0:30
    som er det samme som 45 grader.
  • 0:30 - 0:32
    Du kan tegne retningspunktet.
  • 0:32 - 0:36
    Sinus er defineret som
    y-koordinaten på enhedscirklen.
  • 0:36 - 0:39
    Så du skal finde denne værdi.
  • 0:39 - 0:40
    Du svarer med det samme,
  • 0:40 - 0:43
    okay, det er 45 grader.
  • 0:43 - 0:46
    Lad mig tegne trekanten en smule større.
  • 0:46 - 0:48
    Trekanten ser således ud.
  • 0:48 - 0:49
    Dette er 45.
  • 0:49 - 0:51
    Dette er 45 grader.
  • 0:51 - 0:54
    Dette er 90.
  • 0:54 - 0:57
    Du kan løse for en 45 45 90 trekant.
  • 0:57 - 0:59
    Hypotenusen er 1.
  • 0:59 - 1:00
    Dette er x.
  • 1:00 - 1:01
    Dette er x.
  • 1:01 - 1:02
    De har den samme værdi.
  • 1:02 - 1:05
    Dette er en ligebenet trekant.
  • 1:05 - 1:07
    Disse to grundvinkler er ens.
  • 1:07 - 1:13
    Du får x² + x² er lig 1²,
    som jo blot er 1.
  • 1:13 - 1:15
    2x² = 1.
  • 1:15 - 1:17
    x² = 1/2.
  • 1:17 - 1:20
    x er lig kvadratroden af 1/2,
  • 1:20 - 1:23
    som er 1 over kvadratroden af 2.
  • 1:23 - 1:31
    Jeg kan omskrive det ved at gange med
    √2 / √2.
  • 1:31 - 1:35
    Så får jeg x er lig
    √2 / 2.
  • 1:35 - 1:39
    Højden er √2 / 2.
  • 1:39 - 1:42
    Hvis du vil finde denne afstand,
    så er den det samme.
  • 1:42 - 1:43
    Men vi skal blot finde højden.
  • 1:43 - 1:49
    Da sinus til dette blot svarer til højden,
    altså y-koordinaten.
  • 1:49 - 1:53
    Vi fik √2 / 2.
  • 1:53 - 1:54
    Dette er en gennemgang.
  • 1:54 - 2:00
    VI har lært dette i en
    video om enhedscirklen.
  • 2:00 - 2:08
    En anden dag kommer jeg hen
    til dig og siger fortæl mig
  • 2:08 - 2:15
    hvad er arcsin til
    √2 / 2?
  • 2:15 - 2:16
    Hvad er arcsin?
  • 2:16 - 2:17
    Du er overrasket
  • 2:17 - 2:19
    Du tænker, jeg ved,
    hvad sinus til en vinkel er,
  • 2:19 - 2:24
    men dette er en ny trigonometrisk funktion
    som Sal har fundet på.
  • 2:24 - 2:28
    Alt hvad du behøver at vide er,
    når der står arc foran sin,
  • 2:28 - 2:31
    som også nogle gange
    hedder den inverse sinus
  • 2:31 - 2:34
    -- der kunne lige så godt have stået
  • 2:34 - 2:38
    den inverse sinus til
    √2 / 2 --
  • 2:38 - 2:43
    er at dette betyder,
    hvilken vinkel skal jeg
  • 2:43 - 2:48
    finde sinusværdien til og få
    √2 / 2.
  • 2:48 - 2:55
    Det siger, hvilken vinkel har sinusværdien
    √2 / 2?
  • 2:55 - 3:06
    Jeg kan omskrive begge disse udsagn som
  • 3:06 - 3:11
    sinus til hvilken vinkel er lig
    √2 / 2.
  • 3:11 - 3:16
    Og jeg tror, at dette er
    nemmere for dig at svare på.
  • 3:16 - 3:18
    Sinus til hvilken vinkel er
    √2 / 2?
  • 3:18 - 3:24
    Vi har jo lige set, at sinus til π/4
    er √2 / 2.
  • 3:24 - 3:31
    Så jeg ved, at sinus til π/4 er lig
    √2 / 2.
  • 3:31 - 3:36
    Mit spørgsmålstegn er lig π/4.
  • 3:36 - 3:52
    Jeg kan omskrive dette til arcsin til
    √2 / 2 er lig π/4.
  • 3:52 - 3:58
    Jeg giver dig en værdi og
    beder dig angive den vinkel,
  • 3:58 - 4:01
    som sinus til giver denne værdi.
  • 4:01 - 4:04
    Hvortil du siger øh Sal,
  • 4:04 - 4:05
    -- lad mig lige gå herhen --
  • 4:05 - 4:09
    π/2 passer eller 45 grader passer,
  • 4:09 - 4:13
    men jeg kan blive ved med
    at lægge 360 grader eller 2π til.
  • 4:13 - 4:19
    Alle disse passer, da jeg jo kommer hen
    til det samme punkt på enhedscirklen.
  • 4:19 - 4:20
    Og du har ret.
  • 4:20 - 4:25
    Alle disse værdier er svar på dette.
  • 4:25 - 4:28
    Fordi når du tager sinus
    til disse vinkler,
  • 4:28 - 4:32
    hvor du har lagt 360 til flere gange,
  • 4:32 - 4:34
    så får du √2 / 2.
  • 4:34 - 4:34
    Det er et problem.
  • 4:34 - 4:42
    Du kan ikke have en funktion,
    hvor f(x) mapper til flere værdier.
  • 4:42 - 4:52
    Hvis den mapper over i π/4 eller
    π/4 + 2π eller π/4 + 4π.
  • 4:52 - 4:55
    For at dette er en gyldig funktion,
  • 4:55 - 4:58
    altså for at den inverse sinus
    funktion kan defineres
  • 4:58 - 5:00
    så bliver jeg nødt til at
    begrænse dens værdimængde.
  • 5:00 - 5:07
    Vi begrænser dens værdimængde
    det mest naturlige sted.
  • 5:07 - 5:10
    Hvad er dens definitionsmængde
    begrænset til?
  • 5:10 - 5:20
    Hvis jeg siger, at arcsin(x) = θ,
  • 5:20 - 5:22
    hvad er definitionsmængden begrænset til?
  • 5:22 - 5:25
    Hvad er de gyldige x-værdier?
  • 5:25 - 5:27
    x kan være lig med?
  • 5:27 - 5:34
    Hvis jeg tager sinus til en vinkel,
    så kan jeg kun få værdier mellem 1 og -1.
  • 5:34 - 5:39
    x skal være større end eller lig med -1
    og mindre end eller lig 1.
  • 5:39 - 5:42
    Det er definitionsmængden.
  • 5:42 - 5:44
    For at gøre dette til en gyldig funktion,
  • 5:44 - 5:48
    så bliver jeg nødt til
    at begrænse dens værdimængde.
  • 5:48 - 5:53
    For arcsin, siger konventionen, at den
    skal begrænses til 1. og 4. kvadrant.
  • 5:53 - 5:59
    Altså begrænse de mulige vinkler til
    dette område langs enhedscirklen.
  • 5:59 - 6:02
    θ er begrænset til at være
  • 6:02 - 6:11
    mindre end eller lig med π/2
    og større end eller lig med -π/2.
  • 6:11 - 6:14
    Med det kan vi forstå, hvad arcsin er.
  • 6:14 - 6:17
    Lad os lave endnu en opgave.
  • 6:17 - 6:20
    -- jeg laver lige lidt plads --
  • 6:20 - 6:23
    Lad os sige jeg spørger dig,
  • 6:23 - 6:36
    hvad er arcsin til
    -√3 / 2?
  • 6:36 - 6:38
    Muligvis kan du huske det og siger,
  • 6:38 - 6:41
    jeg ved hvilken sin(x) eller sin(θ),
    der er √3 / 2.
  • 6:41 - 6:42
    Og du er færdig.
  • 6:42 - 6:45
    men jeg kan ikke huske det.
  • 6:45 - 6:47
    så lad mig tegne en enhedscirkel.
  • 6:47 - 6:54
    Når vi snakker arcsin, så behøver jeg kun
    tegne 1. og 4. kvadrant af enhedscirklen.
  • 6:54 - 6:55
    Dette er y-aksen.
  • 6:55 - 6:57
    Dette er min x-akse.
  • 6:57 - 7:00
    x og y.
  • 7:00 - 7:01
    Hvor er jeg?
  • 7:01 - 7:04
    Hvis sinus af noget er
    -√3 / 2,
  • 7:04 - 7:06
    så betyder det, at y-koordinaten på
  • 7:06 - 7:09
    enhedscirklen er
    -√3 / 2.
  • 7:09 - 7:15
    Det betyder vi er cirka her.
  • 7:15 - 7:19
    Dette er -√3 / 2.
  • 7:19 - 7:20
    Vi er lige her.
  • 7:20 - 7:24
    Hvilken vinkel er det?
  • 7:24 - 7:26
    Lad os se lidt på det.
  • 7:26 - 7:32
    Min y-koordinat er
    -√3 / 2.
  • 7:32 - 7:33
    Dette er vinklen.
  • 7:33 - 7:39
    Det bliver en negativ vinkel,
    fordi vi går under x-aksen med uret.
  • 7:39 - 7:44
    -- lad mig lige lave en trekant --
  • 7:44 - 7:46
    -- jeg vælger lige en anden farve --
  • 7:46 - 7:48
    Dette er en trekant.
  • 7:48 - 7:53
    -- lad mig bruge denne farve --
  • 7:53 - 7:56
    Jeg forstørrer den.
  • 7:56 - 7:58
    Dette er θ.
  • 7:58 - 8:01
    Hvad er denne længde?
  • 8:01 - 8:06
    Det er det samme som y-højden,
    som er √3 / 2.
  • 8:06 - 8:08
    Det er minus, fordi vi går nedad.
  • 8:08 - 8:09
    Vi skal finde denne vinkel.
  • 8:09 - 8:12
    Vi ved, det er en negativ vinkel.
  • 8:12 - 8:14
    Når du ser √3 / 2
  • 8:14 - 8:17
    så tænker du forhåbentlig på en
    30 60 90 trekant.
  • 8:17 - 8:18
    √3 / 2.
  • 8:18 - 8:20
    Denne side er 1/2.
  • 8:20 - 8:23
    Denne side er naturligvis 1,
    da det er en enhedscirkel.
  • 8:23 - 8:25
    Radius er 1.
  • 8:25 - 8:26
    I en 30 60 90 trekant er
  • 8:26 - 8:30
    vinklen over for side på
    √3 / 2 lig 60 grader.
  • 8:30 - 8:33
    Denne vinkel her er 30 grader.
  • 8:33 - 8:35
    Vi ved, at θ er 60 grader.
  • 8:35 - 8:36
    Det er dens størrelse,
  • 8:36 - 8:40
    men den går nedad,
    så den er -60 grader.
  • 8:40 - 8:43
    θ er lig -60 grader.
  • 8:43 - 8:45
    Hvis vi bruger radianer,
    så er det ikke godt nok.
  • 8:45 - 8:54
    Vi skal gange med
    π radianer for hver 180 grader.
  • 8:55 - 8:56
    Graderne går ud med hinanden.
  • 8:56 - 9:04
    Tilbage har vi at θ er lig -π/3 radianer.
  • 9:04 - 9:16
    Vi kan nu sige, at arcsin til
    -√3 / 2
  • 9:16 - 9:20
    er lig -π/3 radianer.
  • 9:20 - 9:26
    Eller vi kan sige, at den inverse sinus
    til -√3 / 2
  • 9:26 - 9:31
    er lig -π/3 radianer.
  • 9:31 - 9:35
    Lad os bekræfte dette med en lommeregner.
  • 9:35 - 9:38
    Jeg har allerede sat den til radianer.
  • 9:38 - 9:41
    Det kan du tjekke her.
    mode
  • 9:41 - 9:43
    Jeg er i radianer.
  • 9:43 - 9:45
    Nu får jeg forhåbentlig det rigtige svar.
  • 9:45 - 9:49
    Jeg skal finde den inverse sinus
  • 9:49 - 9:52
    -- så 2nd-knappen og sin knappen --
  • 9:52 - 10:00
    til -√3 / 2.
  • 10:00 - 10:04
    Det er lig -1,04.
  • 10:04 - 10:11
    Dette er altså lig -1,04 radianer.
  • 10:11 - 10:14
    Derfor må π/3 var lig 1,04.
  • 10:14 - 10:16
    Lad os se, om jeg kan bekræfte det.
  • 10:16 - 10:25
    Når jeg skriver -π divideret med 3,
    hvad får jeg så?
  • 10:25 - 10:27
    Jeg får præcis den samme værdi.
  • 10:27 - 10:29
    Min lommeregner gav mig
    præcis den samme værdi.
  • 10:29 - 10:35
    Men min lommeregner fortæller
    mig ikke, at dette er -π/3.
Title:
Introduktion til invers-sinus
Description:

Sal introducerer invers-sinus (arcsin), som er den inverse funktion af sinus, og diskuterer dens værdimængde.

Lær om de inverse funktioner til sinus, cosinus og tangens, og hvordan de er defineret, selv om funktionerne ikke er egentlig inverterbare. Disse funktioner er meget nyttige, når du løser trigonometriske ligninger.

I opvarmning til Infinitesimalregning skal du bygge ovenpå mange af de færdigheder, du allerede har. Vi skal arbejde med: sammensatte funktioner, trigonometriske funktioner, vektorer, matricer, keglesnit samt sandsynlighedsregning og kombinatorik. Der er dog også to nye emner om talrækker samt grænseværdier og kontinuitet. I opvarmning til infinitesimalregning fra Khan Academy får du en omfattende, oplysende og spændende introduktion til infinitesimalregning. Glæd dig!

Khan Academy har en mission om at give gratis, verdensklasse undervisning til hvem som helst, hvor som helst. Vi tilbyder quizzer, opgaver, videoer og artikler inden for områder som matematik, kunst, computerprogrammering, økonomi, fysik, kemi, biologi, medicin, finans, historie, og meget mere. Vi giver lærere værktøjer og data som de kan bruge til at hjælpe deres elever med at udvikle deres færdigheder, vaner og tankegang, så de fremover kan have succes både i skolen og senere i livet. Khan Academy er oversat til mange sprog og over 15 millioner mennesker verden over lærer via Khan Academy hver måned. Khan Academy er et 501(c)(3) nonprofit selskab.

Giv en donation eller Bliv frivillig i dag!

https://www.khanacademy.org/donate

https://www.khanacademy.org/contribute

more » « less
Video Language:
English
Team:
Khan Academy
Duration:
10:36

Danish subtitles

Revisions Compare revisions