Задача из теории игр: можно ли предсказывать поведение людей? — Лукас Хастид
-
0:07 - 0:10Не так давно в нашем сообществе
мы разместили задачу: -
0:10 - 0:15«Представьте себе ряд
целых чисел от 0 до 100, -
0:15 - 0:22угадайте число, наиболее близкое к 2/3 от
среднего числа загаданных всеми чисел». -
0:22 - 0:27То есть, если в среднем все загадали 60,
правильным будет ответ 40. -
0:27 - 0:30Как вы думаете, какое число в качестве 2/3
-
0:30 - 0:33от среднего результата
называли опрошенные. -
0:33 - 0:36Давайте попробуем логически
осмыслить ответ на этот вопрос. -
0:36 - 0:38В эту игру играют при условии,
-
0:38 - 0:41известном специалистам теории игр
как общепринятое знание. -
0:41 - 0:45Это не только одна и та же информация,
известная каждому из игроков, -
0:45 - 0:48и не только, что все игроки знают,
что она известна всем остальным, -
0:48 - 0:50но ещё все знают, что и это всем известно,
-
0:50 - 0:53и так до бесконечности.
-
0:53 - 0:59В нашем примере самое высокое значение
будет в том случае, если все загадают 100. -
0:59 - 1:03Таким образом, 2/3 от
среднего ответа равняется 66,66. -
1:03 - 1:05Поскольку все смогут это вычислить,
-
1:05 - 1:10не имеет смысла отгадывать число выше 67.
-
1:10 - 1:13Если все игроки придут к такому выводу,
-
1:13 - 1:16никто не назовёт число выше 67.
-
1:16 - 1:20Следовательно 67 —
предельная величина среднего ответа, -
1:20 - 1:25поэтому ни одна из осмысленных догадок
не должна быть выше 2/3 от него, или 44. -
1:25 - 1:29В дальнейшем можно
применить схожую логику. -
1:29 - 1:34С каждым шагом самое высокое
число будет всё меньше. -
1:34 - 1:38Поэтому имеет смысл угадать нижний
предел данной последовательности. -
1:38 - 1:41Если бы в самом деле все выбрали ноль,
-
1:41 - 1:45то игра достигла бы так
называемого равновесия Нэша. -
1:45 - 1:49Это ситуация, при которой каждый игрок
выбирает наиболее оптимальную стратегию, -
1:49 - 1:53при условии, что остальные игроки играют
-
1:53 - 1:57и никто не может увеличить выигрыш,
изменив свою стратегию. -
1:57 - 2:02Но в действительности так не бывает.
-
2:02 - 2:05Оказывается, люди не всегда
поступают рационально, -
2:05 - 2:09а также не ждут, что рационально
будут поступать другие. -
2:09 - 2:12Или, возможно, существует совокупность
элементов и того, и другого поведения. -
2:12 - 2:15Когда в эту игру играют
в реальных условиях, -
2:15 - 2:20средний ответ обычно
находится где-то между 20 и 35. -
2:20 - 2:26Игру провела датская газета «Politiken»,
в ней приняли участие 19 тысяч читателей, -
2:26 - 2:32в результате чего при среднем загаданном
числе 22 ответ составил 14. -
2:32 - 2:36Среди аудитории нашего
сайта ответ 31,3. -
2:36 - 2:41Поэтому, если вы угадали 21 в качестве 2/3
от среднего числа — это хороший результат. -
2:41 - 2:45Специалисты по теории игр в экономике
нашли способ смоделировать взаимоотношения -
2:45 - 2:50между рациональностью и целесообразностью,
назвав это К-уровневым мышлением. -
2:50 - 2:55«К» означает число повторяющихся
циклов мышления. -
2:55 - 2:59Игрок с уровнем К-0
будет действовать по наитию: -
2:59 - 3:03просто назовёт число наугад,
не думая о других игроках. -
3:03 - 3:08На уровне К-1 игрок решит,
что остальные играют на нулевом уровне, -
3:08 - 3:12поэтому назовёт среднее
число 50 и получит ответ 33. -
3:12 - 3:17На уровне 2 предположат, что все
остальные играют на уровне 1, -
3:17 - 3:19и ответ будет 22.
-
3:19 - 3:23Чтобы дойти до нуля,
потребуется 12-й уровень К. -
3:23 - 3:28По имеющимся данным, большинство людей
останавливается на уровнях К-1 и К-2. -
3:28 - 3:31И это полезно знать,
поскольку К-уровневое мышление -
3:31 - 3:34по-настоящему вступает в игру
в ситуациях с высокой ответственностью. -
3:34 - 3:36Например, при оценке стоимости акций
-
3:36 - 3:39брокеры не полагаются только
на отчёты о прибылях и убытках, -
3:39 - 3:43но и на стоимость акций аналогичных
компаний, оцениваемых другими игроками. -
3:43 - 3:44В футболе во время пенальти
-
3:44 - 3:47как выполняющий удар игрок,
так и вратарь одновременно решают, -
3:47 - 3:50куда двигаться: влево или вправо,
-
3:50 - 3:53в своём решении основываясь
на том, как думает противник. -
3:53 - 3:57Вратари запоминают стили ударов
своих оппонентов заранее, -
3:57 - 4:00но об этом знают выполняющие удар игроки
и, соответственно, меняют тактику. -
4:00 - 4:04В любом случае участники должны
оценивать своё понимание -
4:04 - 4:07наилучшей стратегии действия
по отношению к тому, как по их мнению -
4:07 - 4:10ситуацию понимают другие участники.
-
4:10 - 4:15Но утверждение про 1 и 2 уровни К
ни в коем случае не аксиома, -
4:15 - 4:20просто принимая во внимание эту тенденцию,
люди могут приспосабливать свои ожидания. -
4:20 - 4:24Например, что будет, если сыграть
в нашу игру с 2/3 отгадок, -
4:24 - 4:28осознавая разницу
между логическим подходом -
4:28 - 4:30и наиболее общепринятым?
-
4:30 - 4:34Отправьте ваш ответ о том,
каким будет новая средняя догадка, -
4:34 - 4:36используя приведённый опросник.
-
4:36 - 4:38И мы узнаем результат.
- Title:
- Задача из теории игр: можно ли предсказывать поведение людей? — Лукас Хастид
- Speaker:
- Лукас Хастид
- Description:
-
Посмотреть урок полностью: https://ed.ted.com/lessons/game-theory-challenge-can-you-predict-human-behavior-lucas-husted
Если загадать число в ряду целых чисел от 0 до 100, каким будет число, на 2/3 приближенное к тому, которое загадало большинство людей? Например, если в среднем все загадали 60, то правильный ответ будет 40. В игру играют при условии, которое известно в теории игр как общеизвестное знание: у каждого игрока, что известно каждому игроку, имеется одинаковая информация. Как играть, объяснит Лукас Хастид.
Урок — Лукас Хастид, мультипликация — Антон Трофимов.
- Video Language:
- English
- Team:
closed TED
- Project:
- TED-Ed
- Duration:
- 04:40
![]() |
Natalia Ost approved Russian subtitles for Game theory challenge: Can you predict human behavior? | |
![]() |
Natalia Ost edited Russian subtitles for Game theory challenge: Can you predict human behavior? | |
![]() |
Ростислав Голод accepted Russian subtitles for Game theory challenge: Can you predict human behavior? | |
![]() |
Ростислав Голод edited Russian subtitles for Game theory challenge: Can you predict human behavior? | |
![]() |
Ростислав Голод edited Russian subtitles for Game theory challenge: Can you predict human behavior? | |
![]() |
Ростислав Голод edited Russian subtitles for Game theory challenge: Can you predict human behavior? | |
![]() |
Ростислав Голод edited Russian subtitles for Game theory challenge: Can you predict human behavior? | |
![]() |
Ростислав Голод edited Russian subtitles for Game theory challenge: Can you predict human behavior? |