-
Trong video này,
ta giả sử 4 mục sau
-
là các khoản nợ chưa
thanh toán của bạn.
-
Số đầu tiên ở mỗi hàng
-
là số dư nợ cho vay
chưa thanh toán.
-
Ví dụ, với thẻ tín dụng này,
-
bạn có số dư nợ
chưa thanh toán là 500 đô la.
-
Số thứ hai là lãi suất
phần trăm hàng năm (APR).
-
Lãi suất là 15% cho thẻ tín dụng,
-
30% cho thẻ tín dụng bán lẻ,
10% cho khoản vay A
-
và 5% cho khoản vay B.
-
Số thứ ba được liệt kê ở đây
-
là khoản thanh toán tối thiểu.
-
Bạn cần trả khoản này hàng tháng.
-
Ta có 20 cộng 30 bằng 50,
rồi cộng thêm 150.
-
Khoản thanh toán tối thiểu
hàng tháng của bạn là 200 đô la.
-
Ta viết 200 đô la.
-
Vậy còn tổng dư nợ cho vay
chưa thanh toán của bạn sẽ bằng
-
3500 cộng 500 bằng 4000,
cộng thêm 4000 bằng 8000,
-
cộng thêm 2000 bằng 10.000.
-
Vậy bạn nợ 10.000 đô la.
-
Khoản thanh toán tối thiểu
của bạn là 200 đô la.
-
Nhưng giả sử bạn phải trả
-
nhiều hơn 200 đô la hàng tháng.
-
Giả sử bạn có 300 đô la,
-
300 đô la hàng tháng.
-
Vậy câu hỏi đặt ra
là bạn sẽ làm gì
-
sau khi trả xong
các khoản thanh toán tối thiểu?
-
Bạn sẽ làm gì với số tiền
100 đô la dư ra đó?
-
Lời khuyên là bạn nên
dùng số tiền đó để trả nợ
-
sao cho bạn có thể
thanh toán nợ nhanh nhất có thể.
-
Nhưng bạn có thể thắc mắc
-
rằng nên trả khoản nợ nào trước.
-
Có nên chia 400 đô la đó
thành 4 phần
-
để trả thêm 25 đô la so với mỗi khoản
thanh toán tối thiểu này không?
-
Nên trả khoản lớn nhất trước
-
hay khoản nhỏ nhất trước?
-
Có nên trả khoản lãi suất
cao nhất trước không?
-
Tất cả các cách trên đều khả thi
-
nhưng để tính toán
một cách tối ưu nhất
-
thì bạn nên trả
khoản nợ lớn nhất trước.
-
Cách thức trả nợ này
được gọi là phương pháp tuyết lở.
-
Khi áp dụng phương pháp này,
bạn nên trả khoản nợ lớn nhất,
-
khoản nợ nhiều tiền nhất của bạn trước.
-
Trong trường hợp này
là khoản nợ thẻ tín dụng bán lẻ.
-
Vậy thứ tự trả nợ của bạn nên là
-
trả các khoản thanh toán
tối thiểu trước
-
và nếu bạn có khoản nào dư ra
-
thì bạn nên ưu tiên trả
khoản nợ của thẻ tín dụng bán lẻ.
-
Once the retail card is paid off,
-
let's see, after that the credit card
-
has the next highest interest.
-
So, copy and paste.
-
Then, these two loans, they're already in order, 10%, 5%.
-
So, I'm just ordering these form highest interest cost
-
to lowest interest cost.
-
In this world, you would want to,
-
essentially, rank them in this way.
-
You obviously have to pay their minimum payments
-
every month which is $200 but then I would take
-
that extra hundred dollars that you have available
-
and put it to the most costly debt.
-
So, I would put that extra hundred dollars right over here
-
and try to pay this one down as fast as possible.
-
Once that is paid off, then I would put any extra you have
-
after the minimum payments to the credit card.
-
And once that's paid off as well, then to loan A.
-
Once that's paid off, to loan B
-
and hopefully you are then, you might be then debt-free.
-
If you did the high rate method right over here,
-
you would, and you don't incur any new debt,
-
you would be debt-free after 47 months.
-
And you would pay an aggregate interest
-
of approximately 39, $3,904
-
in interest over those 47 months.
-
So, you say, "Okay, Sal, I get it.
-
"This is the mathematically optimal thing to do
-
"to get rid of your most costly thing first
-
"which makes sense`and then your next costly thing
-
"and then on and on."
-
But you tell me, "Well, you know, psychology matters here.
-
"Psychology, maybe, got me into this debt a little bit.
-
"So, for me, I don't like having my brain always thinking
-
"about all of these four pieces of debt.
-
"So, I would just love to maybe not have to worry
-
"about four things and get to worrying
-
"about three things as soon as possible
-
"and then two things as soon as possible."
-
So, if you think that is helpful,
-
there is a method where you say,
-
"Okay, I'm gonna pay my smallest balance first
-
"to just get that out of the way."
-
Now, keep in mind, if that works for you,
-
if that psychologically allows you to say,
-
"Okay, that hundred dollars
-
"is gonna make a bigger dent here," that's great.
-
That's actually called the snowball method.
-
Let me write here.
-
The idea is a snowball, you get one debt out of the way
-
and then you snowball into the next.
-
But that, just to be clear is not mathematically optimal.
-
It will take you longer to pay your debt
-
and you will pay more interest.
-
But, I'll just write that down
-
because the important thing is that you feel
-
that you should put the hundred dollars
-
to paying down the debt that you don't use it
-
for something else.
-
So, the snowball method
-
would order these things differently.
-
Under the snowball method, you would put your--
-
Let's see, your credit card has the smallest loan balance.
-
So, let me put that first.
-
So, copy and paste.
-
That's your credit card.
-
Then, after that, let's see, you have loan A.
-
You have loan A here.
-
So, let me copy and paste that.
-
Copy and paste loan A.
-
Then you have loan B.
-
So, loan B.
-
Oh, actually, yup, then you have loan B.
-
Copy and paste.
-
And then you have your retail card.
-
And then you have your retail card.
-
And you could see why this isn't gonna work out well.
-
Why this isn't gonna work out well mathematically
-
'cause you're leaving your most expensive--
-
You're paying just the minimum on your most expensive,
-
on your most expensive debt.
-
Not only is it expensive, it's expensive on a large amount.
-
But, let's just go through the...
-
So, you might find it more psychologically easy
-
to do this method because you at least get rid
-
of the credit card debt a lot faster.
-
You'll get down to only three sources of debt
-
versus four much, much faster.
-
So, in this situation, you would pay down
-
the credit card first.
-
So, you'd be able to knock these off faster.
-
But, just so you make sure, there is a trade off.
-
In this one, it's gonna take you 54 months
-
to pay of your debt.
-
So, seven months longer, more than half a year longer.
-
You're going to be making payments.
-
And you're going to pay almost double in interest.
-
You're gonna pay 6,000, approximately $6,000 in interest
-
in this situation versus
-
I guess about 50% more.
-
So, here you're paying almost 4,000 in interest.
-
Here you're paying roughly $6,000 in interest
-
over the 54 months.
-
The mathematically rational one to do
-
would be the high rate method.
-
But this is, you know, whatever it does.
-
Assuming you have the money, as long as you put it
-
down towards your debt, at least you're making progress.
-
And this is a method that some people might want to use
-
more for psychological purposes.
-
I have to admit, I have done this where I just wanted
-
some debt out of the way so I pay down the small one first.
-
But, if you really want to optimize
-
for interest payments and paying down fast,
-
you want to take out your costliest things first.