< Return to Video

CRITICAL THINKING - Cognitive Biases: Anchoring [HD]

  • 0:00 - 0:06
    Música
  • 0:06 - 0:07
    Mi nombre es Laurie Santos.
  • 0:07 - 0:10
    Enseño psicología en la universidad de Yale, y hoy
  • 0:10 - 0:13
    Quiero hablar sobre anclaje.
  • 0:13 - 0:16
    Esta clase hace parte de una serie sobre sesgos cognitivos.
  • 0:16 - 0:19
    Hagamos un problema matemático. muy rápido, usted
  • 0:19 - 0:21
    debe hacerlo en su mente
  • 0:21 - 0:22
    ¿Listo?
  • 0:22 - 0:28
    Primero, multiplique los siguientes números: ocho por siete por seis
  • 0:28 - 0:32
    por cinco por cuatro por tres por dos por uno.
  • 0:32 - 0:35
    OK, eso es todo.
  • 0:35 - 0:37
    ¿Cual es su respuesta?
  • 0:37 - 0:38
    ¿Mil?
  • 0:38 - 0:40
    ¿Dos mil?
  • 0:40 - 0:43
    Cuando los psicólogos Danny Kahneman y Amos Tversky trataron esto con
  • 0:43 - 0:45
    Humanos, los resultados en promedio
  • 0:45 - 0:48
    Adivinaron al rededor de dos mil docientos cincuenta
  • 0:48 - 0:49
    Parece ser una buena respuesta.
  • 0:49 - 0:53
    Pero ahora, supongamos que le di un problema matemático distinto.
  • 0:53 - 0:55
    ¿Que tal si le doy este problema?
  • 0:55 - 0:56
    ¿Listo?
  • 0:56 - 1:00
    uno por dos por tres por cuatro
  • 1:00 - 1:05
    por cinco por seis por siete por ocho.
  • 1:05 - 1:06
    ¿Cúal es su respuesta?
  • 1:06 - 1:08
    Si usted es como las muestras de Kaheneman y Tversky
  • 1:08 - 1:11
    Su respuesta podría ser un poco diferente.
  • 1:11 - 1:14
    Para esta pregunta, los encuestados respondieron un número mucho menor.
  • 1:14 - 1:17
    En promedio dijeron que el resultado era mas o menos quinientos doce.
  • 1:17 - 1:20
    La primera cosa impresionante sobre estos
  • 1:20 - 1:24
    estimados matemáticos es que las personas obtienen un resultado muy, muy erróneo.
  • 1:24 - 1:25
    De hecho,¿ la respuesta real?
  • 1:25 - 1:29
    Pues, para ambos, es cuarenta mil trecientos veinte.
  • 1:29 - 1:32
    Las personas se equivocan por mucho.
  • 1:32 - 1:35
    Pero la segunda cosa , y aun mas impresionante es que las personas
  • 1:35 - 1:40
    dan diferentes respuestas a los dos problemas, aun cuando son solo diferentes maneras
  • 1:40 - 1:42
    de decir la misma pregunta.
  • 1:42 - 1:44
    ¿Por qué damos diferentes respuestas,
  • 1:44 - 1:47
    cuando el mismo problema matemático es presentado de diferente manera?
  • 1:47 - 1:50
    La respuesta esta en como hacemos estimados.
  • 1:50 - 1:52
    Cuando usted tiene bastante tiempo para hacer un problema matemático
  • 1:52 - 1:56
    Como ocho por siete por seis por cinco por cuatro por tres
  • 1:56 - 1:59
    por dos por uno, usted puede multiplicar todos
  • 1:59 - 2:01
    los números juntos y obtener un resultado exacto.
  • 2:01 - 2:03
    Pero cuando se tiene que hacer el problema
  • 2:03 - 2:05
    rápido, usted no tiene tiempo para terminar.
  • 2:05 - 2:07
    entonces usted empieza por los primero números .
  • 2:07 - 2:10
    multiplicas ocho por siete, y da cincuenta y seis.
  • 2:10 - 2:13
    y después debes multiplicar eso por seis,
  • 2:13 - 2:17
    y, entonces, esta adivinando que el número resultado es muy grande, mas grande que
  • 2:17 - 2:20
    cincuenta y seis, tal vez dos mil mas o menos.
  • 2:20 - 2:22
    Pero cuando se hace el segundo problema, usted empieza
  • 2:22 - 2:27
    con uno por dos, y, entonces, eso es solo dos, y dos por tres es solo seis.
  • 2:27 - 2:29
    Su respuesta será bastante pequeña.
  • 2:29 - 2:31
    Tal vez solo quinientos mas o menos.
  • 2:31 - 2:34
    El proceso de adivinar basado en el primer
  • 2:34 - 2:36
    Número que usted ve es lo que se le llama "anclaje"
  • 2:36 - 2:38
    EL primer número en el que pensamos
  • 2:38 - 2:40
    cuando hacemos nuestros estimados es el ancla.
  • 2:40 - 2:42
    Y una vez tenemos un ancla en nuestra cabeza,
  • 2:42 - 2:45
    pues, ajustamos de alguna manera lo que se necesite desde ahí.
  • 2:45 - 2:49
    El problema es que nuestras mentes esta sesgadas a no ajustar tanto como lo necesitamos.
  • 2:49 - 2:52
    Las anclas son cognitivamente muy fuertes
  • 2:52 - 2:55
    En el primer problema se empezó desde cincuenta y seis, y
  • 2:55 - 2:58
    se ajustó a un número muchos mas grande desde ahí.
  • 2:58 - 3:01
    Y en el segundo problema, se empezó con seis, y se ajustó desde ahí.
  • 3:01 - 3:06
    El problema es que iniciar desde diferentes extremos nos lleva a adivinar diferentes respuestas.
  • 3:06 - 3:11
    Como las anclas reales, nuestras anclas estimadas estancan en un solo lugar.
  • 3:11 - 3:15
    Nosotros regularmente fallamos en arrastrar el ancla lo suficiente para obtener la respuesta correcta.
  • 3:15 - 3:18
    Kahneman y Tversky descubrieron que este
  • 3:18 - 3:20
    tipo de anclaje pasa todo el tiempo,
  • 3:20 - 3:22
    aun con anclas que son totalmente arbitrarias.
  • 3:22 - 3:25
    Por ejemplo, le pidieron a las personas que girarán una rueda con
  • 3:25 - 3:28
    números del uno al mil, y luego le pidieron que estimaran
  • 3:28 - 3:32
    que porcentaje de países en las Naciones Unidas son africanos.
  • 3:32 - 3:35
    Las personas que en la rueda obtuvieron diez estimaron que
  • 3:35 - 3:37
    el numero era mas o menos veinticinco por ciento.
  • 3:37 - 3:40
    Pero las personas que obtuvieron en la rueda sesenta y cinco estimaron que
  • 3:40 - 3:42
    el número era cuarenta y cinco por ciento.
  • 3:42 - 3:46
    En otro experimento , Dan Ariely y sus colegas pidieron a las personas
  • 3:46 - 3:49
    que escribieran los últimos dos números de su seguro social
  • 3:49 - 3:51
    Luego se les pregunto si pagarían
  • 3:51 - 3:54
    esta cantidad en dolares por una buena botella de vino.
  • 3:54 - 3:58
    Ariely y sus colegas descubrieron que las personas con el quintil del número
  • 3:58 - 4:03
    del seguro social pagarían tres a cuatro veces mas por el mismo bien.
  • 4:03 - 4:05
    Solo con poner un ancla mas grande puede hacer
  • 4:05 - 4:07
    que una persona que pudiera pagar ocho dolares por una botella
  • 4:07 - 4:11
    de vino en cambio estuviera dispuesto a gastar veintisiete dolares
  • 4:11 - 4:15
    Tristemente para nosotros, los vendedores usan anclas contra nosotros todo el tiempo.
  • 4:15 - 4:18
    ¿Cuantas veces ha notado un vendedor o una publicidad
  • 4:18 - 4:21
    anclandolo a usted a un precio en particular, o
  • 4:21 - 4:24
    aún en la cantidad de producto usted debería comprar?
  • 4:24 - 4:26
    Ya sea comprar un carro, o un suéter,
  • 4:26 - 4:30
    o aún rentar un cuarto de hotel , nuestras intuiciones sobre que precios
  • 4:30 - 4:35
    son racionables para pagar, regularmente vienen de una ancla arbitraria.
  • 4:35 - 4:38
    Entonces, la próxima vez que se le de un ancla, tómese un segundo para pensar.
  • 4:38 - 4:40
    Recuerde que pasó cuando usted
  • 4:40 - 4:42
    Soltó su ancla muy alta, y luego
  • 4:42 - 4:45
    considere pensar un número completamente diferente.
  • 4:45 - 4:49
    Podría afectar su estimado mas de lo que usted cree.
Title:
CRITICAL THINKING - Cognitive Biases: Anchoring [HD]
Description:

more » « less
Video Language:
English
Duration:
04:54

Spanish subtitles

Revisions