< Return to Video

¿Cómo impactará el aprendizaje automático en la economía?

  • 0:00 - 0:03
    ♪ (música) ♪
  • 0:03 - 0:06
    - [Narradora] Bienvenidos
    a Nobel Conversations.
  • 0:07 - 0:10
    En este episodio,
    Josh Angrist y Guido Imbens
  • 0:10 - 0:13
    se reúnen con Isaiah Andrews
    para discutir y discrepar
  • 0:13 - 0:15
    sobre el papel
    del aprendizaje automático
  • 0:15 - 0:17
    en la econometría aplicada.
  • 0:18 - 0:20
    - [Isaiah] Bien. Por supuesto
    que hay muchos temas
  • 0:20 - 0:21
    en los que ustedes
    están muy de acuerdo,
  • 0:21 - 0:23
    pero me gustaría pasar a uno
  • 0:23 - 0:24
    sobre el que tal vez
    opinen algo distinto.
  • 0:24 - 0:26
    Me gustaría escuchar
    algunas de sus opiniones
  • 0:26 - 0:27
    sobre el aprendizaje automático
  • 0:27 - 0:30
    y el papel que desempeña
    y desempeñará en la economía.
  • 0:30 - 0:32
    - [Guido] He consultado
    algunos datos,
  • 0:32 - 0:33
    como los datos privados.
  • 0:33 - 0:35
    Vemos que no hay
    ningún documento publicado allí.
  • 0:36 - 0:39
    Se hizo un experimento
    sobre algún algoritmo de búsqueda
  • 0:39 - 0:41
    y la cuestión era...
  • 0:43 - 0:45
    se trataba de clasificar cosas
    y cambiar la clasificación.
  • 0:46 - 0:47
    Y estaba más o menos claro
  • 0:47 - 0:50
    que iba a haber
    mucha heterogeneidad.
  • 0:51 - 0:56
    Si buscas, digamos,
  • 0:58 - 1:01
    una foto de Britney Spears,
  • 1:01 - 1:03
    realmente no importa
    dónde la clasifiques
  • 1:03 - 1:05
    porque vas a encontrar
    lo que estás buscando,
  • 1:06 - 1:07
    ya sea que la clasifiques
  • 1:07 - 1:10
    en primera, segunda
    o tercera posición.
  • 1:10 - 1:12
    Pero si estás buscando
    el mejor libro de econometría,
  • 1:12 - 1:17
    si pones tu libro en primer lugar
    o en el décimo,
  • 1:17 - 1:18
    eso va a suponer
    una gran diferencia
  • 1:18 - 1:20
    en la frecuencia
  • 1:20 - 1:21
    con la que la gente
    hará clic en él.
  • 1:22 - 1:23
    Así que ahí--
  • 1:23 - 1:24
    [Josh] ¿Por qué necesito
  • 1:24 - 1:27
    el aprendizaje automático
    para descubrir eso?
  • 1:27 - 1:29
    Porque parece que puedo descubrirlo
    de forma sencilla.
  • 1:29 - 1:31
    - [Guido] En general--
  • 1:31 - 1:32
    - [Josh] Había
    un montón de posibles--
  • 1:32 - 1:34
    - [Guido]...quieres pensar
    que los artículos
  • 1:34 - 1:37
    tienen montón de características,
  • 1:37 - 1:39
    que quieres entender
  • 1:39 - 1:44
    lo que impulsa la heterogeneidad
    en el efecto de--
  • 1:44 - 1:45
    - Pero solo estás prediciendo.
  • 1:45 - 1:46
    En cierto sentido,
  • 1:46 - 1:48
    estás resolviendo
    un problema de marketing.
  • 1:48 - 1:49
    - No, es un efecto causal,
  • 1:49 - 1:52
    - Es causal, pero no tiene
    contenido científico.
  • 1:52 - 1:53
    Piensa en--
  • 1:54 - 1:57
    - No, pero hay cosas similares
    en el ámbito médico.
  • 1:58 - 1:59
    Si haces un experimento,
  • 1:59 - 2:02
    puedes estar muy interesado
    en si el tratamiento funciona
  • 2:02 - 2:04
    para algunos grupos o no.
  • 2:04 - 2:06
    Y tienes un montón
    de características individuales,
  • 2:06 - 2:08
    y quieres buscar sistemáticamente--
  • 2:08 - 2:10
    - Sí. Tengo mis dudas sobre esa...
  • 2:10 - 2:13
    esa especie de idea de que hay
    un efecto causal personal
  • 2:13 - 2:14
    que me debería importar
  • 2:14 - 2:15
    y que el aprendizaje automático
  • 2:15 - 2:17
    puede descubrirlo
    de alguna manera que sea útil.
  • 2:18 - 2:19
    Así que piensa en--
  • 2:19 - 2:20
    he trabajado mucho en las escuelas,
  • 2:20 - 2:22
    yendo a, digamos,
    una escuela chárter,
  • 2:22 - 2:24
    una escuela privada
    financiada con fondos públicos,
  • 2:25 - 2:27
    efectivamente,
    que es libre de estructurar
  • 2:27 - 2:30
    su propio plan de estudios
    en función del contexto.
  • 2:30 - 2:31
    Algunos tipos de escuelas chárter
  • 2:31 - 2:33
    consiguen
    un rendimiento espectacular
  • 2:33 - 2:36
    y en el conjunto de datos
    que produce ese resultado,
  • 2:36 - 2:38
    tengo un montón de covariables.
  • 2:38 - 2:40
    Tengo
    las puntuaciones de referencia
  • 2:40 - 2:41
    y los antecedentes familiares,
  • 2:41 - 2:46
    la educación de los padres,
    el sexo del niño, la raza del niño.
  • 2:46 - 2:50
    Y, bueno, en cuanto reúno
    media docena de ellas,
  • 2:50 - 2:52
    tengo un espacio
    de muy alta dimensión.
  • 2:52 - 2:55
    Sin duda, me interesan
    las características del curso
  • 2:55 - 2:57
    de ese efecto del tratamiento,
  • 2:57 - 2:59
    como por ejemplo, si es mejor
    para las personas
  • 2:59 - 3:02
    que provienen de familias
    con menores ingresos.
  • 3:02 - 3:06
    Me cuesta creer
    que haya una aplicación
  • 3:06 - 3:10
    para la versión
    de muy alta dimensión,
  • 3:10 - 3:12
    en la que descubrí
    que para los niños no blancos
  • 3:12 - 3:15
    que tienen
    ingresos familiares altos
  • 3:15 - 3:18
    pero puntuaciones de referencia
    en el tercer cuartil
  • 3:18 - 3:21
    y que solo fueron
    a la escuela pública
  • 3:21 - 3:23
    en el tercer grado
    pero no en el sexto.
  • 3:23 - 3:26
    Así que eso es lo que produce
    ese análisis de alta dimensión.
  • 3:26 - 3:28
    Es una declaración condicional
    muy elaborada.
  • 3:28 - 3:31
    Hay dos cosas que están mal,
    en mi opinión.
  • 3:31 - 3:32
    En primer lugar, no lo veo como--
  • 3:32 - 3:34
    no puedo imaginar
    por qué es algo procesable.
  • 3:34 - 3:37
    No sé por qué
    querrías actuar sobre ello.
  • 3:37 - 3:39
    Y también sé que hay
    algún modelo alternativo
  • 3:39 - 3:43
    que encaja casi igual de bien,
    que lo invierte todo.
  • 3:43 - 3:45
    Porque el aprendizaje automático
  • 3:45 - 3:48
    no me dice que este es realmente
    el predictor que importa,
  • 3:48 - 3:51
    solo me dice
    que este es un buen predictor.
  • 3:51 - 3:55
    Así que creo,
    que hay algo diferente
  • 3:55 - 3:58
    en el contexto
    de las ciencias sociales.
  • 3:58 - 4:00
    - [Guido] Creo que las aplicaciones
    de las ciencias sociales
  • 4:00 - 4:04
    de las que hablas
    son aquellas en las que, creo,
  • 4:04 - 4:08
    no hay una gran cantidad
    de heterogeneidad en los efectos.
  • 4:10 - 4:14
    - [Josh] Bueno, podría haberla
    si me permites llenar ese espacio.
  • 4:14 - 4:16
    - No... ni siquiera entonces.
  • 4:16 - 4:19
    Creo que para muchas
    de esas intervenciones,
  • 4:19 - 4:23
    se espera que el efecto
    sea del mismo signo para todos.
  • 4:23 - 4:27
    Puede haber pequeñas diferencias
    en la magnitud, pero no es...
  • 4:28 - 4:30
    Porque muchas de estas
    diferencias educativas
  • 4:30 - 4:32
    son buenas para todos.
  • 4:32 - 4:36
    No es que sean malas
    para algunas personas
  • 4:36 - 4:37
    y buenas para otras
  • 4:37 - 4:40
    y en algunos pequeños casos
    pueden ser malas.
  • 4:40 - 4:44
    Pero puede haber
    algo de variación en la magnitud,
  • 4:44 - 4:45
    pero se necesitarían
  • 4:45 - 4:47
    conjuntos de datos
    muy muy grandes para encontrarlos.
  • 4:47 - 4:49
    Estoy de acuerdo en que,
    en esos casos,
  • 4:49 - 4:51
    probablemente no serían
    muy procesables de todos modos.
  • 4:52 - 4:54
    Pero creo que hay
    muchos otros escenarios
  • 4:54 - 4:56
    donde hay mucha más heterogeneidad.
  • 4:57 - 4:59
    - Bueno, estoy abierto
    a esa posibilidad
  • 4:59 - 5:01
    y creo que el ejemplo que has dado
  • 5:01 - 5:05
    es esencialmente
    un ejemplo de marketing.
  • 5:06 - 5:10
    - No, esos tienen
    implicaciones para ello
  • 5:10 - 5:12
    y esa es la organización,
  • 5:12 - 5:15
    si tienes que preocuparte por la--
  • 5:15 - 5:18
    - Bueno, necesito
    ver ese documento.
  • 5:18 - 5:21
    - Así que, la sensación
    que tengo es que...
  • 5:21 - 5:23
    - Todavía no estamos de acuerdo
    en algo.
  • 5:23 - 5:26
    - Sí.
    - No hemos coincidido en todo.
  • 5:26 - 5:27
    - Tengo esa sensación.
    [risas]
  • 5:27 - 5:29
    - En realidad,
    hemos discrepado en esto
  • 5:29 - 5:31
    porque no estaba para discutir.
  • 5:31 - 5:33
    [risas]
  • 5:33 - 5:35
    - ¿Se está poniendo
    algo caluroso aquí?
  • 5:36 - 5:38
    - Caluroso.
    Es bueno que esté caluroso.
  • 5:38 - 5:40
    La sensación que tengo es, Josh,
  • 5:40 - 5:42
    que no estás diciendo
    que estás seguro
  • 5:42 - 5:44
    de que no hay manera
    de que haya una aplicación
  • 5:44 - 5:46
    en la que estas cosas sean útiles.
  • 5:46 - 5:47
    Estás diciendo
    que no estás convencido
  • 5:47 - 5:49
    con las aplicaciones existentes
    hasta la fecha.
  • 5:50 - 5:54
    - Es justo.
  • Not Synced
    - Estoy muy seguro.
  • Not Synced
    [risas]
  • Not Synced
    - En este caso.
  • Not Synced
    - Creo que Josh tiene un punto que incluso en los casos de predicción donde muchos de los métodos de aprendizaje de la máquina realmente brillan es donde hay un montón de heterogeneidad.
  • Not Synced
    - No te importan mucho los detalles,
    ¿verdad?
  • Not Synced
    - [Guido] Sí.
  • Not Synced
    - No tiene un ángulo de política o algo así.
  • Not Synced
  • Not Synced
  • Not Synced
Title:
¿Cómo impactará el aprendizaje automático en la economía?
ASR Confidence:
0.83
Description:

more » « less
Video Language:
English
Team:
Marginal Revolution University
Duration:
20:33

Spanish (Latin America) subtitles

Revisions Compare revisions