Return to Video

LIFE BEYOND II: The Museum of Alien Life (4K)

  • 2:03 - 2:06
    (Narrator)
    To have any hope of finding alien life,
  • 2:06 - 2:07
    we have to know what to look for.
  • 2:12 - 2:14
    But where do we begin?
  • 2:15 - 2:19
    How do we narrow down a
    seemingly infinite set of possibilities?
  • 2:27 - 2:29
    There's one thing we know for sure:
  • 2:31 - 2:33
    nature will have to play by her own rules.
  • 2:37 - 2:40
    No matter how strange alien life might be,
  • 2:40 - 2:44
    it's going to be limited by the same
    physical and chemical laws
  • 2:44 - 2:45
    that we are.
  • 2:52 - 2:53
    On top of this,
  • 2:53 - 2:56
    each alien environment will further limit
  • 2:56 - 2:58
    what kinds of lifeforms can evolve there.
  • 3:07 - 3:09
    Despite these natural boundaries,
  • 3:09 - 3:12
    the possibilities are staggering
    to imagine.
  • 3:14 - 3:18
    Trillions of planets,
    each a unique cauldron of chemicals
  • 3:18 - 3:21
    undergoing their own complex evolution.
  • 3:28 - 3:31
    To guide our thinking,
    this museum of alien life
  • 3:31 - 3:34
    will be divided into two exhibits:
  • 3:36 - 3:37
    life as we know it,
  • 3:37 - 3:41
    home to beings
    with biochemistries like ours;
  • 3:42 - 3:44
    and life as we don't know it,
  • 3:44 - 3:47
    home to beings that challenge our concept
  • 3:47 - 3:48
    of life itself.
  • 3:54 - 3:57
    Before we venture
    too far into the unknown,
  • 3:57 - 3:59
    we have to ask ourselves:
  • 4:00 - 4:01
    what if alien life
  • 4:01 - 4:04
    is more like us than we think?
  • 4:15 - 4:17
    If there's one feature that unites us
  • 4:17 - 4:20
    with the other specimens in this museum,
  • 4:20 - 4:21
    it's carbon.
  • 4:25 - 4:27
    (Nick Lane) Carbon is ubiquitous,
  • 4:27 - 4:30
    it's one of the most common
    elements in the universe,
  • 4:30 - 4:33
    and it's very good at forming
    large, stable molecules.
  • 4:37 - 4:39
    (Narrator)
    Carbon has the rare ability to form
  • 4:39 - 4:42
    four-way bonds
    with other elements,
  • 4:42 - 4:43
    and to bind to itself
  • 4:43 - 4:45
    in long, stable chains,
  • 4:46 - 4:50
    enabling the formation of
    huge complex molecules.
  • 4:56 - 4:59
    This versatility makes carbon
    the centerpiece
  • 4:59 - 5:01
    in the molecular machinery of life.
  • 5:03 - 5:06
    And the same carbon compounds
    that we use
  • 5:06 - 5:08
    have been found far from Earth,
  • 5:09 - 5:10
    clinging to meteorites,
  • 5:12 - 5:14
    and floating in far-off clouds
  • 5:14 - 5:16
    of cosmic dust.
  • 5:18 - 5:20
    The building blocks of life,
  • 5:21 - 5:24
    drifting like snow through the universe.
  • 5:30 - 5:34
    And if alien life has selected
    other carbon compounds
  • 5:34 - 5:35
    for their biochemistry,
  • 5:36 - 5:37
    they will have plenty to choose from.
  • 5:42 - 5:44
    Scientists recently identified
  • 5:44 - 5:48
    over a million possible
    alternatives to DNA—
  • 5:48 - 5:50
    all carbon-based.
  • 5:58 - 6:01
    If we ever discover
    other carbon-based lifeforms,
  • 6:01 - 6:04
    we would be fundamentally related.
  • 6:08 - 6:10
    They would be our cosmic brethren.
  • 6:13 - 6:15
    But would they look anything like us?
  • 6:20 - 6:22
    If they hail from Earth-like planets,
  • 6:23 - 6:25
    we could share even more in common
  • 6:25 - 6:27
    than just our biochemistry.
  • 6:30 - 6:32
    (Jonathan Losos)
    What would life be like on other planets,
  • 6:32 - 6:33
    if it is evolved?
  • 6:33 - 6:36
    Would it be like
    the world today here on Earth,
  • 6:37 - 6:39
    or would it be completely different?
  • 6:40 - 6:42
    There are those who argue that,
  • 6:42 - 6:45
    from the argument of convergent evolution,
  • 6:45 - 6:48
    if conditions on other planets
    are similar to here,
  • 6:48 - 6:50
    then we would see very similar life forms.
  • 6:55 - 6:58
    Animal- and plant-like organisms
    that look very familiar.
  • 7:12 - 7:14
    (Narrator)
    On Earth, certain features like
  • 7:14 - 7:17
    eyesight, echolocation, and flight
  • 7:17 - 7:21
    have evolved multiple times
    independently in different species.
  • 7:24 - 7:26
    This process of convergent evolution
  • 7:26 - 7:29
    could extend to alien planets like Earth,
  • 7:29 - 7:32
    where creatures face similar
    environmental pressures.
  • 7:35 - 7:38
    It's no guarantee,
    but there could be
  • 7:38 - 7:41
    certain universalities of life.
  • 7:44 - 7:49
    The greatest hits of evolution
    on repeat across the universe.
  • 7:58 - 8:01
    Each feature would be attuned
    to its local environment.
  • 8:03 - 8:04
    Dimly lit planets
  • 8:04 - 8:08
    would produce
    huge eyes to suck in extra light,
  • 8:08 - 8:10
    like nocturnal mammals.
  • 8:14 - 8:17
    (Jonathan Losos)
    Some people have gone so far as to say
  • 8:17 - 8:19
    that human-type organisms,
  • 8:19 - 8:19
    humanoids,
  • 8:19 - 8:21
    will occur on other planets.
  • 8:26 - 8:27
    The existence of other
  • 8:27 - 8:30
    humanlike organisms seems unlikely,
  • 8:30 - 8:33
    given the long, convoluted
    chain of events
  • 8:33 - 8:34
    that produced us.
  • 8:35 - 8:36
    But we can't rule it out.
  • 8:41 - 8:44
    If just one in every
    hundred trillion Earth-like planets
  • 8:44 - 8:46
    produced a humanlike form,
  • 8:46 - 8:47
    there could still be
  • 8:47 - 8:50
    thousands of creatures like us out there.
  • 9:10 - 9:14
    Convergent evolution is also rampant
    in plant life,
  • 9:14 - 9:16
    and C₄ photosynthesis
  • 9:16 - 9:19
    has arisen independently over 40 times.
  • 9:22 - 9:24
    Would alien plants look like ours
  • 9:24 - 9:25
    or something else entirely?
  • 9:37 - 9:39
    On Earth,
    plants appear green
  • 9:39 - 9:41
    because they absorb the other wavelengths
  • 9:41 - 9:43
    in the Sun's light spectrum.
  • 9:45 - 9:49
    But stars come in many colors,
  • 9:52 - 9:55
    and alien plants would evolve
    different pigments
  • 9:55 - 9:57
    to adapt to their sun's unique spectrum.
  • 10:04 - 10:06
    Plants feeding off hotter stars
  • 10:06 - 10:08
    could appear redder,
  • 10:08 - 10:10
    by absorbing their energy-rich
  • 10:10 - 10:11
    bluer light.
  • 10:20 - 10:22
    Around dim red dwarf stars,
  • 10:22 - 10:24
    vegetation could appear black,
  • 10:25 - 10:26
    adapted to absorb
  • 10:26 - 10:28
    all visible wavelengths of light.
  • 10:45 - 10:48
    Earth itself
    may have once appeared purple,
  • 10:48 - 10:50
    due a pigment called retinal that was
  • 10:50 - 10:52
    an early precursor to chlorophyll.
  • 10:55 - 10:58
    Some think that
    retinal's molecular simplicity
  • 10:58 - 11:01
    could make it a more universal pigment.
  • 11:04 - 11:05
    If so,
  • 11:05 - 11:07
    we may find that purple
  • 11:08 - 11:10
    is life's favorite color.
  • 11:20 - 11:22
    But the color of alien vegetation
  • 11:22 - 11:24
    is more than just a curiosity—
  • 11:26 - 11:27
    it's chemical information
  • 11:27 - 11:29
    that can be seen from lightyears away.
  • 11:34 - 11:37
    Earth plants leave a signature "bump"
  • 11:37 - 11:39
    in the light reflected off our planet.
  • 11:40 - 11:43
    Finding a similar signal
    from another world
  • 11:43 - 11:45
    could point the way to alien vegetation.
  • 11:50 - 11:52
    Perhaps this will be
  • 11:52 - 11:54
    our first glimpse at alien life:
  • 11:55 - 11:58
    a vibrant hue cast by a distant world.
  • 12:21 - 12:22
    (Caleb Scharf)
    What happens when you change
  • 12:22 - 12:23
    the day length of a planet?
  • 12:23 - 12:24
    What happens when you change
  • 12:24 - 12:26
    the tilt of a planet?
  • 12:26 - 12:27
    What happens when you change
  • 12:27 - 12:28
    the shape of the orbit?
  • 12:28 - 12:29
    What happens when you change
  • 12:29 - 12:31
    the gravity of a planet?
  • 12:34 - 12:37
    (Narrator)
    Planets with long, elliptical orbits
  • 12:37 - 12:40
    would see drastic seasons.
  • 12:41 - 12:42
    There could be worlds
  • 12:42 - 12:45
    that appear dead for thousands of years,
  • 12:45 - 12:48
    then suddenly spring to life.
  • 13:02 - 13:05
    Most of the rocky planets
    discovered so far
  • 13:05 - 13:07
    have been massive "super-Earths".
  • 13:13 - 13:16
    How would life evolve on these worlds?
  • 13:19 - 13:20
    In the seas,
  • 13:20 - 13:22
    gravity may not matter much at all.
  • 13:29 - 13:31
    (Unnamed)
    A high-gravity planet
  • 13:31 - 13:32
    isn't high-gravity all over.
  • 13:34 - 13:36
    If you're in the sea
    and that's where all life starts,
  • 13:36 - 13:38
    there's very nearly no gravity
  • 13:38 - 13:41
    'cause you're much the same density
    as the stuff around you.
  • 13:43 - 13:46
    It's when the animals come out on land,
  • 13:46 - 13:47
    that they feel the gravity.
  • 13:52 - 13:54
    High g-forces would necessitate
  • 13:54 - 13:56
    large bones and muscle mass
  • 13:56 - 13:58
    in complex life on land.
  • 14:00 - 14:01
    They would also demand
  • 14:01 - 14:03
    a more robust circulatory system.
  • 14:05 - 14:07
    And plant life could be stunted
  • 14:07 - 14:09
    by the energy cost of carrying nutrients
  • 14:09 - 14:11
    under stronger gravity.
  • 14:17 - 14:19
    Low-gravity planets
  • 14:19 - 14:22
    would more easily
    lose their atmospheres to space,
  • 14:22 - 14:23
    and lack a magnetic field
  • 14:23 - 14:25
    to protect from cosmic rays.
  • 14:36 - 14:38
    But smaller worlds could be home
  • 14:38 - 14:39
    to secret oases:
  • 14:46 - 14:49
    huge cave systems that provide hideouts
  • 14:49 - 14:50
    for life.
  • 15:27 - 15:29
    The smallest possible habitable planets
  • 15:29 - 15:32
    are estimated at 2.5%
  • 15:32 - 15:33
    Earth's mass.
  • 15:35 - 15:38
    If surface life does evolve
    on these worlds,
  • 15:39 - 15:41
    it could be a sight to behold.
  • 15:45 - 15:47
    Plant life could grow to towering heights,
  • 15:47 - 15:50
    able to carry nutrients higher
    in lesser gravity.
  • 15:59 - 16:00
    And without the need
  • 16:00 - 16:03
    for bulky skeletons and muscle mass,
  • 16:03 - 16:05
    animals could have body types
  • 16:05 - 16:06
    that boggle the mind.
  • 16:31 - 16:32
    Here on Earth,
  • 16:32 - 16:35
    it took three billion years for evolution
  • 16:35 - 16:37
    to produce complex plant and animal life.
  • 16:40 - 16:42
    Simpler organisms are hardier,
  • 16:42 - 16:43
    more adaptable,
  • 16:43 - 16:44
    and more widespread.
  • 16:48 - 16:50
    The largest collection
  • 16:50 - 16:51
    in the museum of alien life
  • 16:51 - 16:54
    would likely be the "Hall of Microbes".
  • 17:10 - 17:13
    Yet finding even the tiniest alien microbe
  • 17:13 - 17:15
    would be a profound discovery.
  • 17:30 - 17:32
    And bite-sized life
  • 17:32 - 17:34
    could leave a big footprint.
  • 17:36 - 17:37
    Like stromatolites on Earth,
  • 17:37 - 17:39
    layers of microbes could build up
  • 17:39 - 17:42
    into huge rock mounds over time,
  • 17:42 - 17:44
    leaving behind eerie structures.
  • 17:49 - 17:50
    And in big enough numbers,
  • 17:50 - 17:52
    some alien bacteria could leave
  • 17:52 - 17:54
    a distinct biosignature
  • 17:56 - 17:59
    by exhaling gases that wouldn't
    coexist naturally,
  • 17:59 - 18:01
    like oxygen and methane.
  • 18:07 - 18:08
    (Shawn Domagal-Goldman)
    There's ways to make
  • 18:08 - 18:10
    oxygen without life,
    there's ways to make
  • 18:10 - 18:11
    methane without life,
  • 18:11 - 18:13
    but to have them in the atmosphere together
  • 18:13 - 18:15
    is almost impossible unless you've got
  • 18:15 - 18:17
    biology making those gases at the surface.
  • 18:18 - 18:19
    And it would have an imprint
  • 18:19 - 18:21
    on the planet's spectrum of colors.
  • 18:23 - 18:25
    (Narrator)
    Next-generation space telescopes
  • 18:25 - 18:27
    could find a signal like this,
  • 18:28 - 18:31
    on a world not far from home.
  • 18:32 - 18:34
    (Chris Crowe)
    The closest Sun-like star
  • 18:34 - 18:38
    with an Earth-like exoplanet
    in the habitable zone
  • 18:38 - 18:40
    is probably only 20 light years away,
  • 18:40 - 18:42
    and can be seen with the naked eye.
  • 19:06 - 19:08
    Most brown dwarfs are too hot
  • 19:08 - 19:10
    to support life as we know it.
  • 19:11 - 19:13
    But some are just cold enough.
  • 19:24 - 19:26
    All the prime elements for life
  • 19:26 - 19:29
    have been detected
    inside their atmospheres.
  • 19:31 - 19:33
    And within these clouds,
  • 19:33 - 19:36
    some layers would provide
    ideal temperatures and pressures
  • 19:36 - 19:38
    for habitability.
  • 19:46 - 19:49
    There could be photosynthetic plankton
    in these skies,
  • 19:50 - 19:53
    kept aloft by churning upwinds.
  • 19:57 - 20:01
    And with enough force,
    these upwinds could even support
  • 20:01 - 20:03
    larger, more complex life.
  • 20:06 - 20:07
    Predators.
  • 20:44 - 20:46
    This raises a crucial question:
  • 20:48 - 20:50
    what if we've been looking in
    all the wrong places?
  • 20:53 - 20:55
    What if nature has other ideas?
  • 21:21 - 21:24
    Most of the universe
    is too cold or too hot
  • 21:24 - 21:25
    for liquid water
  • 21:25 - 21:28
    and the biochemistry that supports
    life as we know it.
  • 21:31 - 21:34
    But in case our biases are misleading,
  • 21:35 - 21:36
    we have to cast a wide net—
  • 21:39 - 21:42
    to search for life outside
    the habitable zone,
  • 21:42 - 21:45
    in places that seem wildly hostile to us.
  • 21:49 - 21:51
    Exotic environments
  • 21:51 - 21:53
    will demand exotic biochemistries,
  • 21:53 - 21:57
    and while no element can match
    carbon's versatility,
  • 21:57 - 21:59
    one contender is a frontrunner.
  • 22:08 - 22:09
    At first glance,
  • 22:09 - 22:11
    silicon seem similar to carbon.
  • 22:13 - 22:15
    It forms the same four-way bonds
  • 22:15 - 22:17
    and is also abundant in the universe.
  • 22:19 - 22:21
    But a closer look reveals that
  • 22:21 - 22:23
    these two elements are false twins.
  • 22:27 - 22:29
    Silicon bonds are weaker,
  • 22:29 - 22:33
    and less prone to forming
    large, complex molecules.
  • 22:36 - 22:38
    Despite this,
  • 22:38 - 22:41
    they can withstand a wider range
    of temperatures,
  • 22:41 - 22:44
    opening up intriguing possibilities.
  • 22:47 - 22:49
    (Carl Sagan)
    Life based on the silicon atom,
  • 22:49 - 22:51
    instead of carbon,
  • 22:51 - 22:53
    would be more resistant to the
    extreme cold,
  • 22:55 - 22:57
    providing a whole new range
  • 22:57 - 22:58
    of weird forms.
  • 23:01 - 23:03
    (Narrator)
    But silicon has a problem:
  • 23:04 - 23:06
    in the presence of oxygen,
  • 23:06 - 23:08
    it binds into solid rock.
  • 23:10 - 23:12
    To avoid turning to stone,
  • 23:12 - 23:14
    silicon beings might be confined
  • 23:14 - 23:16
    to oxygen-free environments
  • 23:16 - 23:18
    like Saturn's frigid moon,
  • 23:18 - 23:19
    Titan.
  • 23:23 - 23:26
    Its vast lakes of
    liquid methane and ethane
  • 23:26 - 23:27
    could be an ideal medium
  • 23:27 - 23:29
    for silicon-based life,
  • 23:29 - 23:32
    or other radical biochemistries.
  • 23:37 - 23:39
    Without ample sunlight,
  • 23:39 - 23:41
    beings on worlds like Titan
  • 23:41 - 23:43
    would likely be chemosynthetic,
  • 23:43 - 23:46
    deriving their energy
    by breaking down rocks.
  • 24:01 - 24:05
    Such life forms could have
    ultra slow metabolisms,
  • 24:05 - 24:06
    and life cycles
  • 24:06 - 24:08
    measured in millions of years.
  • 24:26 - 24:27
    In high temperatures,
  • 24:27 - 24:30
    typically rigid silicon-oxygen bonds
  • 24:30 - 24:32
    become more flexible and reactive,
  • 24:33 - 24:35
    triggering more dynamic chemistry.
  • 24:40 - 24:43
    This has led to a truly bizarre proposal:
  • 24:43 - 24:44
    silicon
  • 24:44 - 24:45
    silicon-based life forms,
  • 24:45 - 24:46
    that live inside-
  • 24:46 - 24:47
    that live inside molten
  • 24:47 - 24:48
    that live inside molten silicate
  • 24:48 - 24:48
    molten silicate rock.
  • 25:01 - 25:02
    In theory,
  • 25:02 - 25:02
    these forms could
  • 25:02 - 25:03
    even exist,
  • 25:03 - 25:04
    deep beneath the Earth...
  • 25:04 - 25:06
    inside magma chambers,
  • 25:06 - 25:07
    as part of a..
  • 25:07 - 25:07
    -of a shadow
  • 25:07 - 25:09
    -of a shadow biosphere.
  • 25:12 - 25:13
    If so...
  • 25:13 - 25:15
    then the aliens
  • 25:15 - 25:15
    then the aliens are right-
  • 25:15 - 25:18
    ..are right under our noses.
  • 25:21 - 25:22
    Other shadow biospheres-
  • 25:22 - 25:23
    have been proposed...
  • 25:23 - 25:25
    forms of life...
  • 25:25 - 25:25
    living alongside us-
  • 25:25 - 25:26
    that we don't even-
  • 25:26 - 25:27
    know are here.
  • 25:27 - 25:30
    Including tiny RNA-based life,
  • 25:30 - 25:32
    small enough to go undetected-
  • 25:32 - 25:34
    by existing instruments.
  • 25:44 - 25:45
    [Many billion years ago]
  • 25:47 - 25:49
    Clouds of dust and empty space,
  • 25:49 - 25:50
    might seem like the last place-
  • 25:50 - 25:53
    you did expect to find anything living.
  • 25:54 - 25:54
    Astronomical Plasma
  • 25:54 - 25:55
    Astronomical Plasma
    But when cosmic dust-
  • 25:55 - 25:57
    Astronomical Plasma
    makes contact with plasma,
  • 25:57 - 25:57
    Astronomical Plasma ⁱⁿᵗᵉʳˢᵗᵉˡˡᵃʳ ⁱᵒⁿⁱᶻᵉᵈ ᵍᵃˢ
    makes contact with plasma,
  • 25:57 - 25:58
    Astronomical Plasma ⁱⁿᵗᵉʳˢᵗᵉˡˡᵃʳ ⁱᵒⁿⁱᶻᵉᵈ ᵍᵃˢ
    ‏‏‎ ‎
  • 25:58 - 25:59
    Astronomical Plasma ⁱⁿᵗᵉʳˢᵗᵉˡˡᵃʳ ⁱᵒⁿⁱᶻᵉᵈ ᵍᵃˢ
    a type of ionized gas...
  • 25:59 - 26:02
    Astronomical Plasma ⁱⁿᵗᵉʳˢᵗᵉˡˡᵃʳ ⁱᵒⁿⁱᶻᵉᵈ ᵍᵃˢ
    something strange happens.
  • 26:02 - 26:02
    Astronomical Plasma ⁱⁿᵗᵉʳˢᵗᵉˡˡᵃʳ ⁱᵒⁿⁱᶻᵉᵈ ᵍᵃˢ
  • 26:06 - 26:07
    In simulated conditions
  • 26:07 - 26:08
    ...dust particles,
  • 26:08 - 26:09
    have been seen-
  • 26:09 - 26:10
    seen spontaneously...
  • 26:10 - 26:11
    self-organizing-
  • 26:11 - 26:12
    into helical structures-
  • 26:12 - 26:13
    that resemble..
  • 26:13 - 26:14
    that resemble DNA.
  • 26:19 - 26:20
    These plasma crystals-
  • 26:20 - 26:21
    even begin to exhibit-
  • 26:21 - 26:23
    life-like behavior...
  • 26:24 - 26:25
    replicating,
  • 26:25 - 26:26
    evolving into more...
  • 26:26 - 26:27
    stable forms-
  • 26:27 - 26:29
    and passing on information.
  • 26:36 - 26:39
    Could these crystals be considered alive?
  • 26:42 - 26:48
    To some researchers, they meet all the criteria
    to qualify as inorganic life forms.
  • 26:52 - 26:57
    So far, we have only ever seen them in computer simulations.
  • 26:59 - 27:04
    But some speculate we could find them
    among the ice particles in the rings of Uranus.
  • 27:12 - 27:12
    Space Plasma
  • 27:12 - 27:13
    Space Plasma
    Plasma is the most-
  • 27:13 - 27:15
    Space Plasma
    common state of matter...
  • 27:15 - 27:15
    Space Plasma
    common state of matter...
  • 27:15 - 27:15
    Space Plasma ⁱⁿᵗᵉʳ⁻ ˢᵒˡᵃʳ‏‏‎ ‎
    ‏‏‎ ‎
  • 27:15 - 27:16
    Space Plasma ⁱⁿᵗᵉʳ⁻ ˢᵒˡᵃʳ ˢʸˢᵗᵉᵐ ⁱᵒⁿⁱᶻᵉᵈ ᵍᵃˢ
    in the Universe.
  • 27:16 - 27:17
    Space Plasma ⁱⁿᵗᵉʳ⁻ ˢᵒˡᵃʳ ˢʸˢᵗᵉᵐ ⁱᵒⁿⁱᶻᵉᵈ ᵍᵃˢ
  • 27:17 - 27:19
    Space Plasma ⁱⁿᵗᵉʳ⁻ ˢᵒˡᵃʳ ˢʸˢᵗᵉᵐ ⁱᵒⁿⁱᶻᵉᵈ ᵍᵃˢ
    If complex evolving-
  • 27:19 - 27:21
    Space Plasma ⁱⁿᵗᵉʳ⁻ ˢᵒˡᵃʳ ˢʸˢᵗᵉᵐ ⁱᵒⁿⁱᶻᵉᵈ ᵍᵃˢ
    plasma crystals really exist?
  • 27:21 - 27:21
    Space Plasma ⁱⁿᵗᵉʳ⁻ ˢᵒˡᵃʳ ˢʸˢᵗᵉᵐ ⁱᵒⁿⁱᶻᵉᵈ ᵍᵃˢ
    ‏‏‎ ‎
  • 27:21 - 27:23
    Space Plasma ⁱⁿᵗᵉʳ⁻ ˢᵒˡᵃʳ ˢʸˢᵗᵉᵐ ⁱᵒⁿⁱᶻᵉᵈ ᵍᵃˢ
    and if they can be considered life,
  • 27:23 - 27:23
    Space Plasma ⁱⁿᵗᵉʳ⁻ ˢᵒˡᵃʳ ˢʸˢᵗᵉᵐ ⁱᵒⁿⁱᶻᵉᵈ ᵍᵃˢ
    ‏‏‎ ‎
  • 27:23 - 27:27
    Space Plasma ⁱⁿᵗᵉʳ⁻ ˢᵒˡᵃʳ ˢʸˢᵗᵉᵐ ⁱᵒⁿⁱᶻᵉᵈ ᵍᵃˢ
    they could be its most common form.
  • 27:39 - 27:47
    Or perhaps life is lurking in the polar opposite environment:
    inside the hearts of dead stars.
  • 27:51 - 27:53
    When massive suns explode,
  • 27:53 - 27:54
    some collapse into-
  • 27:54 - 27:55
    ultra dense cores...
  • 27:55 - 27:55
    P
    ultra dense cores...
  • 27:55 - 27:55
    PS
    ultra dense cores...
  • 27:55 - 27:55
    PSR
    ‏‏‎ ‎
  • 27:55 - 27:56
    PSR B
    called neutron stars.
  • 27:56 - 27:56
    PSR B1
    called neutron stars.
  • 27:56 - 27:56
    PSR B15
    called neutron stars.
  • 27:56 - 27:56
    PSR B150
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-5
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ

    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗᵉ
    called neutron stars.
  • 27:56 - 27:56
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗᵉ᠄
    called neutron stars.
  • 27:56 - 27:57
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗᵉ᠄ ˜
    called neutron stars.
  • 27:57 - 27:57
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗᵉ᠄ ˜⁷
    called neutron stars.
  • 27:57 - 27:57
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗᵉ᠄ ˜⁷∕
    called neutron stars.
  • 27:57 - 27:57
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗᵉ᠄ ˜⁷∕ˢ
    called neutron stars.
  • 27:57 - 27:57
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗᵉ᠄ ˜⁷∕ˢᵉ
    called neutron stars.
  • 27:57 - 27:57
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗᵉ᠄ ˜⁷∕ˢᵉᶜ
    called neutron stars.
  • 27:57 - 27:57
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗᵉ᠄ ˜⁷∕ˢᵉᶜᵒ
    called neutron stars.
  • 27:57 - 27:57
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗᵉ᠄ ˜⁷∕ˢᵉᶜᵒⁿ
    called neutron stars.
  • 27:57 - 27:57
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗᵉ᠄ ˜⁷∕ˢᵉᶜᵒⁿᵈ
    called neutron stars.
  • 27:57 - 27:58
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗᵉ᠄ ˜⁷∕ˢᵉᶜᵒⁿᵈ
    ‏‏‎ ‎
  • 27:58 - 28:00
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗᵉ᠄ ˜⁷∕ˢᵉᶜᵒⁿᵈ
    Hulking masses of atomic nuclei,
  • 28:00 - 28:00
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗᵉ᠄ ˜⁷∕ˢᵉᶜᵒⁿᵈ
    ‏‏‎ ‎
  • 28:00 - 28:03
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗᵉ᠄ ˜⁷∕ˢᵉᶜᵒⁿᵈ
    crammed together like sardines.
  • 28:03 - 28:05
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗᵉ᠄ ˜⁷∕ˢᵉᶜᵒⁿᵈ
  • 28:05 - 28:07
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗᵉ᠄ ˜⁷∕ˢᵉᶜᵒⁿᵈ
    Conditions on the surface-
  • 28:07 - 28:08
    PSR B1509-58
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗᵉ᠄ ˜⁷∕ˢᵉᶜᵒⁿᵈ
    are mind-boggling...
  • 28:08 - 28:08
    PSR B1509-5
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗᵉ᠄ ˜⁷∕ˢᵉᶜᵒⁿᵈ
    are mind-boggling...
  • 28:08 - 28:08
    PSR B1509-
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗᵉ᠄ ˜⁷∕ˢᵉᶜᵒⁿᵈ
    are mind-boggling...
  • 28:08 - 28:08
    PSR B1509
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗᵉ᠄ ˜⁷∕ˢᵉᶜᵒⁿᵈ
    are mind-boggling...
  • 28:08 - 28:08
    PSR B150
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗᵉ᠄ ˜⁷∕ˢᵉᶜᵒⁿᵈ
  • 28:08 - 28:08
    PSR B15
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗᵉ᠄ ˜⁷∕ˢᵉᶜᵒⁿᵈ
  • 28:08 - 28:08
    PSR B1
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗᵉ᠄ ˜⁷∕ˢᵉᶜᵒⁿᵈ
  • 28:08 - 28:08
    PSR B
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗᵉ᠄ ˜⁷∕ˢᵉᶜᵒⁿᵈ
  • 28:08 - 28:08
    PSR B
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗᵉ᠄ ˜⁷∕ˢᵉᶜᵒⁿ
  • 28:08 - 28:08
    PSR B
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗᵉ᠄ ˜⁷∕ˢᵉᶜᵒ
  • 28:08 - 28:08
    PSR B
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗᵉ᠄ ˜⁷∕ˢᵉᶜ
  • 28:08 - 28:08
    PSR B
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈᶦˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖᶦⁿ ʳᵃᵗᵉ᠄ ˜⁷∕ˢᵉ
  • 28:08 - 28:08
    PSR B
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗᵉ᠄ ˜⁷∕ˢ
  • 28:08 - 28:08
    PSR B
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗᵉ᠄ ˜⁷∕
  • 28:08 - 28:08
    PSR B
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗᵉ᠄ ˜⁷
  • 28:08 - 28:08
    PSR
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗᵉ᠄ ˜
  • 28:08 - 28:08
    PSR
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗᵉ᠄
  • 28:08 - 28:08
    PSR
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗᵉ
  • 28:08 - 28:08
    PSR
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃᵗ
  • 28:08 - 28:08
    PSR
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳᵃ
  • 28:08 - 28:08
    PSR
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ ʳ
  • 28:08 - 28:08
    PSR
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖⁱⁿ
  • 28:08 - 28:08
    PSR
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖᶦ
  • 28:08 - 28:08
    PS
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢᵖ
  • 28:08 - 28:08
    PS
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
    ˢ
  • 28:08 - 28:08
    PS
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳˢ
  • 28:08 - 28:08
    PS
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃʳ
  • 28:08 - 28:08
    PS
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉᵃ
  • 28:08 - 28:08
    PS
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸᵉ
  • 28:08 - 28:08
    PS
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ ʸ
  • 28:08 - 28:08
    PS
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰᵗ
  • 28:08 - 28:08
    PS
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍʰ
  • 28:08 - 28:08
    PS
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱᵍ
  • 28:08 - 28:08
    PS
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡⁱ
  • 28:08 - 28:08
    PS
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰ ˡ
  • 28:08 - 28:08
    PS
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰⁰
  • 28:08 - 28:08
    PS
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰⁰
  • 28:08 - 28:08
    PS
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷⁰
  • 28:08 - 28:08
    PS
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹⁷
  • 28:08 - 28:08
    PS
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄ ¹
  • 28:08 - 28:08
    PS
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ᠄
  • 28:08 - 28:08
    PS
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜᵉ
  • 28:08 - 28:08
    PS
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿᶜ
  • 28:08 - 28:08
    PS
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃⁿ
  • 28:08 - 28:08
    PS
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗᵃ
  • 28:08 - 28:08
    PS
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢᵗ
  • 28:08 - 28:08
    PS
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱˢ
  • 28:08 - 28:08
    PS
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
    ᵈⁱ
  • 28:08 - 28:08
    PS
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
  • 28:08 - 28:08
    PS
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃʳ
  • 28:08 - 28:08
    PS
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢᵃ
  • 28:08 - 28:08
    P
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡˢ
  • 28:08 - 28:08
    P
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘˡ
  • 28:08 - 28:08
    P
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖᵘ
  • 28:08 - 28:08
    P
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕ ᵖ
  • 28:08 - 28:08
    P
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ ∕
  • 28:08 - 28:08
    P
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃʳ
  • 28:08 - 28:08
    P
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗᵃ
  • 28:08 - 28:08
    P
    ⁿᵉᵘᵗʳᵒⁿ ˢᵗ
  • 28:08 - 28:08
    P
    ⁿᵉᵘᵗʳᵒⁿ ˢ
  • 28:08 - 28:08
    P
    ⁿᵉᵘᵗʳᵒⁿ
  • 28:08 - 28:08
    P
    ⁿᵉᵘᵗʳᵒ
  • 28:08 - 28:08
    P
    ⁿᵉᵘᵗʳ
  • 28:08 - 28:08
    P
    ⁿᵉᵘᵗ
  • 28:08 - 28:08
    P
    ⁿᵉᵘ
  • 28:08 - 28:08
    P
    ⁿᵉ
  • 28:08 - 28:08
    P
  • 28:08 - 28:08
    P
  • 28:09 - 28:09
    gravity..
  • 28:09 - 28:10
    gravity is a
  • 28:10 - 28:10
    is a hundred
  • 28:10 - 28:11
    is a hundred billion times...
  • 28:11 - 28:12
    stronger than Earths.
  • 28:16 - 28:16
    But beneath..
  • 28:16 - 28:17
    their iron nuclei-
  • 28:17 - 28:18
    iron nuclei crust lies,
  • 28:18 - 28:20
    something strange...
  • 28:21 - 28:22
    a hot-
  • 28:22 - 28:22
    a hot dense
  • 28:22 - 28:23
    a hot dense sea...
  • 28:23 - 28:23
    of neutrons-
  • 28:23 - 28:26
    ..neutrons and subatomic particles.
  • 28:34 - 28:36
    Stripped of their electron shells-
  • 28:36 - 28:38
    these nuclei would obey entirely...
  • 28:38 - 28:40
    different laws of chemistry,
  • 28:40 - 28:43
    based not on the electromagnetic force,
  • 28:43 - 28:45
    but the strong nuclear force...
  • 28:45 - 28:48
    which binds nuclei together.
  • 28:49 - 28:51
    In theory...
  • 28:51 - 28:52
    these particles could link-up to form-
  • 28:52 - 28:54
    larger macronuclei...
  • 28:54 - 28:55
    which could then-
  • 28:55 - 28:57
    combine into even bigger-
  • 28:57 - 28:58
    super nuclei.
  • 29:07 - 29:08
    If so...
  • 29:08 - 29:10
    then this bewildering environment,
  • 29:10 - 29:11
    would mimic the basic-
  • 29:11 - 29:12
    conditions for life.
  • 29:12 - 29:14
    Heavy nucleon molecules,
  • 29:14 - 29:16
    floating in a complex-
  • 29:16 - 29:17
    particle ocean.
  • 29:23 - 29:24
    Some scientists have-
  • 29:24 - 29:25
    proposed the unimaginable...
  • 29:26 - 29:28
    exotic life forms...
  • 29:28 - 29:29
    drifting through the-
  • 29:29 - 29:31
    strange particle sea,
  • 29:31 - 29:32
    living evolving...
  • 29:32 - 29:35
    and dying on incomprehensibly-
  • 29:35 - 29:37
    fast time scales...
  • 29:56 - 30:01
    There's probably no chance of ever detecting
    such a strange breed of life.
  • 30:03 - 30:08
    But there may be hope for finding an even more exotic form.
  • 30:19 - 30:20
    Life is not something-
  • 30:20 - 30:24
    that has to evolve naturally.
  • 30:26 - 30:29
    It can be designed.
  • 30:41 - 30:43
    And once intelligence-
  • 30:43 - 30:44
    is introduced into the-
  • 30:44 - 30:46
    evolutionary process,
  • 30:46 - 30:48
    a Pandora's box is opened.
  • 31:06 - 31:07
    Free from typical...
  • 31:07 - 31:09
    biological limitations,
  • 31:09 - 31:11
    synthetic and machine-based life-
  • 31:11 - 31:12
    could be the most...
  • 31:12 - 31:15
    successful of all.
  • 31:16 - 31:17
    It could thrive...
  • 31:17 - 31:18
    almost anywhere,
  • 31:18 - 31:21
    including the vaccum of space,
  • 31:21 - 31:23
    opening up vast frontiers...
  • 31:23 - 31:26
    unavailable to biological organisms.
  • 31:32 - 31:33
    And compared to the glacial pace-
  • 31:33 - 31:35
    of natural selection,
  • 31:35 - 31:37
    technical evolution-
  • 31:37 - 31:38
    allows exponentially...
  • 31:38 - 31:39
    faster growth,
  • 31:39 - 31:43
    adaptability and resilience.
  • 31:56 - 31:57
    By some estimates,
  • 31:57 - 31:58
    autonomous self-
  • 31:58 - 31:59
    replicating machines...
  • 31:59 - 32:00
    could colonize...
  • 32:00 - 32:02
    an entire galaxy-
  • 32:02 - 32:02
    in as little...
  • 32:02 - 32:05
    as a million years.
  • 32:19 - 32:20
    We can't predict...
  • 32:20 - 32:21
    how hyper-intelligent life-
  • 32:21 - 32:23
    would organize itself,
  • 32:26 - 32:27
    but in theory,
  • 32:27 - 32:28
    there could be-
  • 32:28 - 32:31
    convergent evolution at play.
  • 32:32 - 32:34
    The electrical properties of Silicon-
  • 32:34 - 32:36
    might make it a universal basis...
  • 32:36 - 32:39
    for machine intelligence,
  • 32:39 - 32:40
    a redemption...
  • 32:40 - 32:45
    for its biological shortcomings.
  • 33:03 - 33:05
    With all its potential advantages,
  • 33:05 - 33:08
    With all its potential advantages, machine life may even be a universal endpoint:
  • 33:08 - 33:15
    With all its potential advantages, machine life may even be a universal endpoint:
    the apex of evolutionary process.
  • 33:53 - 33:55
    As the universe ages,
  • 33:55 - 33:57
    perhaps machine intelligence...
  • 33:57 - 33:58
    would come to dominate,
  • 33:59 - 34:00
    and naturally occurring-
  • 34:00 - 34:02
    biological life will be viewed...
  • 34:02 - 34:04
    as a quaint starting point.
  • 34:09 - 34:10
    Perhaps...
  • 34:10 - 34:11
    we ourselves...
  • 34:11 - 34:13
    will lead this transition,
  • 34:13 - 34:14
    and the great human experiment...
  • 34:15 - 34:15
    would be merely...
  • 34:15 - 34:16
    a first link-
  • 34:16 - 34:17
    in a sprawling,
  • 34:17 - 34:24
    intergalactic chain of life.
  • 34:51 - 35:02
    In the end, we are still the only beings we know of
    in the museum of alien life.
  • 35:07 - 35:10
    To truly know ourselves, we will have to know:
  • 35:10 - 35:13
    To truly know ourselves, we will have to know:
    are we the only ones?
  • 35:27 - 35:29
    Loren Eiseley has said...
  • 35:29 - 35:30
    that one does not
  • 35:30 - 35:32
    meet oneself...
  • 35:32 - 35:33
    until one catches...
  • 35:33 - 35:35
    the reflection from an eye-
  • 35:35 - 35:36
    other than human.
  • 35:39 - 35:40
    One day that eye-
  • 35:40 - 35:41
    maybe that...
  • 35:41 - 35:42
    of an intelligent alien.
  • 35:46 - 35:47
    And the sooner-
  • 35:47 - 35:48
    we eschew our...
  • 35:48 - 35:52
    narrow view of evolution,
  • 35:52 - 35:53
    the sooner-
  • 35:53 - 35:54
    we can...
  • 35:54 - 35:56
    truly explore,
  • 35:56 - 35:58
    our ultimate origins...
  • 35:58 - 36:02
    and destinations.
  • 36:04 - 36:07
    We have seen what could be out there.
  • 36:10 - 36:13
    And we know how we might find it.
  • 36:16 - 36:19
    There is only one thing left to do.
  • 36:22 - 36:26
    Go looking.
  • 36:27 - 36:28
    End Credit In 3...
  • 36:28 - 36:29
    End Credit In 2...
  • 36:29 - 36:30
    End Credit In 1...
  • 36:30 - 36:31
    End Credit In 0.99...
  • 36:31 - 36:31
    End Credit In 0.98...
  • 36:31 - 36:31
    End Credit In 0.97...
  • 36:31 - 36:31
    End Credit In 0.96...
  • 36:31 - 36:31
    End Credit In 0.95...
  • 36:31 - 36:31
    End Credit In 0.94...
  • 36:31 - 36:31
    End Credit In 0.93...
  • 36:31 - 36:31
    End Credit In 0.92...
  • 36:31 - 36:31
    End Credit In 0.92...
  • 36:31 - 36:31
    End Credit In 0.91...
  • 36:31 - 36:31
    End Credit In 0.90...
  • 36:31 - 36:31
    End Credit In 0.89...
  • 36:31 - 36:31
    End Credit In 0.89...
  • 36:31 - 36:31
    End Credit In 0.88...
  • 36:31 - 36:31
    End Credit In 0.87...
  • 36:31 - 36:31
    End Credit In 0.86...
  • 36:31 - 36:31
    End Credit In 0.85...
  • 36:31 - 36:31
    End Credit In 0.84...
  • 36:31 - 36:31
    End Credit In 0.83...
  • 36:31 - 36:31
    End Credit In 0.82...
  • 36:31 - 36:31
    End Credit In 0.82...
  • 36:31 - 36:31
    End Credit In 0.81...
  • 36:31 - 36:31
    End Credit In 0.80...
  • 36:31 - 36:31
    End Credit In 0.79...
  • 36:31 - 36:31
    End Credit In 0.78...
  • 36:31 - 36:31
    End Credit In 0.77...
  • 36:31 - 36:31
    End Credit In 0.76...
  • 36:31 - 36:31
    End Credit In 0.75...
  • 36:31 - 36:31
    End Credit In 0.74...
  • 36:31 - 36:31
    End Credit In 0.73...
  • 36:31 - 36:31
    End Credit In 0.72...
  • 36:31 - 36:31
    End Credit In 0.71...
  • 36:31 - 36:31
    End Credit In 0.70...
  • 36:31 - 36:31
    End Credit In 0.69...
  • 36:31 - 36:31
    End Credit In 0.68...
  • 36:31 - 36:31
    End Credit In 0.67...
  • 36:31 - 36:31
    End Credit In 0.67...
  • 36:31 - 36:31
    End Credit In 0.66...
  • 36:31 - 36:31
    End Credit In 0.65...
  • 36:31 - 36:31
    End Credit In 0.64...
  • 36:31 - 36:31
    End Credit In 0.64...
  • 36:31 - 36:31
    End Credit In 0.63...
  • 36:31 - 36:31
    End Credit In 0.62...
  • 36:31 - 36:31
    End Credit In 0.61...
  • 36:31 - 36:31
    End Credit In 0.60...
  • 36:31 - 36:31
    End Credit In 0.59...
  • 36:31 - 36:31
    End Credit In 0.58...
  • 36:31 - 36:31
    End Credit In 0.57...
  • 36:31 - 36:31
    End Credit In 0.57...
  • 36:31 - 36:31
    End Credit In 0.56...
  • 36:31 - 36:31
    End Credit In 0.54...
  • 36:31 - 36:31
    End Credit In 0.53...
  • 36:31 - 36:31
    End Credit In 0.52...
  • 36:31 - 36:31
    End Credit In 0.51...
  • 36:31 - 36:31
    End Credit In 0.50...
  • 36:31 - 36:31
    End Credit In 0.49...
  • 36:31 - 36:31
    End Credit In 0.48...
  • 36:31 - 36:31
    End Credit In 0.47...
  • 36:31 - 36:31
    End Credit In 0.46...
  • 36:31 - 36:31
    End Credit In 0.45...
  • 36:31 - 36:31
    End Credit In 0.44...
  • 36:31 - 36:31
    End Credit In 0.43...
  • 36:31 - 36:31
    End Credit In 0.42...
  • 36:31 - 36:31
    End Credit In 0.41...
  • 36:31 - 36:31
    End Credit In 0.41...
  • 36:31 - 36:31
    End Credit In 0.40...
  • 36:31 - 36:31
    End Credit In 0.40...
  • 36:31 - 36:31
    End Credit In 0.39...
  • 36:31 - 36:31
    End Credit In 0.38...
  • 36:31 - 36:31
    End Credit In 0.37...
  • 36:31 - 36:31
    End Credit In 0.36...
  • 36:31 - 36:31
    End Credit In 0.35...
  • 36:31 - 36:31
    End Credit In 0.34...
  • 36:31 - 36:31
    End Credit In 0.33...
  • 36:31 - 36:31
    End Credit In 0.32...
  • 36:31 - 36:31
    End Credit In 0.31...
  • 36:31 - 36:31
    End Credit In 0.31...
  • 36:31 - 36:31
    End Credit In 0.30...
  • 36:31 - 36:31
    End Credit In 0.29...
  • 36:31 - 36:31
    End Credit In 0.28...
  • 36:31 - 36:31
    End Credit In 0.27...
  • 36:31 - 36:31
    End Credit In 0.26...
  • 36:31 - 36:31
    End Credit In 0.25...
  • 36:31 - 36:31
    End Credit In 0.24...
  • 36:31 - 36:31
    End Credit In 0.23...
  • 36:31 - 36:31
    End Credit In 0.22...
  • 36:31 - 36:31
    End Credit In 0.21...
  • 36:31 - 36:31
    End Credit In 0.20...
  • 36:31 - 36:31
    End Credit In 0.19...
  • 36:31 - 36:31
    End Credit In 0.18...
  • 36:31 - 36:31
    End Credit In 0.17...
  • 36:31 - 36:31
    End Credit In 0.16...
  • 36:31 - 36:31
    End Credit In 0.15...
  • 36:31 - 36:31
    End Credit In 0.14...
  • 36:31 - 36:31
    End Credit In 0.13...
  • 36:31 - 36:31
    End Credit In 0.13...
  • 36:31 - 36:31
    End Credit In 0.12...
  • 36:31 - 36:31
    End Credit In 0.11...
  • 36:31 - 36:31
    End Credit In 0.10...
  • 36:31 - 36:31
    End Credit In 0.09...
  • 36:31 - 36:31
    End Credit In 0.08...
  • 36:31 - 36:31
    End Credit In 0.07...
  • 36:31 - 36:31
    End Credit In 0.06...
  • 36:31 - 36:31
    End Credit In 0.05...
  • 36:31 - 36:31
    End Credit In 0.05...
  • 36:31 - 36:31
    End Credit In 0.04...
  • 36:31 - 36:31
    End Credit In 0.03...
  • 36:31 - 36:31
    End Credit In 0.03...
  • 36:31 - 36:31
    End Credit In 0.02...
  • 36:31 - 36:31
    End Credit In 0.01...
  • 36:33 - 36:34
    𝐇𝐀𝐍𝐃 𝐂𝐑𝐀𝐅𝐓𝐄𝐃 𝐁𝐘 𝐌𝐄𝐋𝐎𝐃𝐘𝐒𝐇𝐄𝐄𝐏
  • 36:34 - 36:34

    𝐇𝐀𝐍𝐃 𝐂𝐑𝐀𝐅𝐓𝐄𝐃 𝐁𝐘 𝐌𝐄𝐋𝐎𝐃𝐘𝐒𝐇𝐄𝐄𝐏
  • 36:34 - 36:34
    ᴄᴀ
    𝐇𝐀𝐍𝐃 𝐂𝐑𝐀𝐅𝐓𝐄𝐃 𝐁𝐘 𝐌𝐄𝐋𝐎𝐃𝐘𝐒𝐇𝐄𝐄𝐏
  • 36:34 - 36:34
    ᴄᴀᴘ
    𝐇𝐀𝐍𝐃 𝐂𝐑𝐀𝐅𝐓𝐄𝐃 𝐁𝐘 𝐌𝐄𝐋𝐎𝐃𝐘𝐒𝐇𝐄𝐄𝐏
  • 36:34 - 36:34
    ᴄᴀᴘᴛ
    𝐇𝐀𝐍𝐃 𝐂𝐑𝐀𝐅𝐓𝐄𝐃 𝐁𝐘 𝐌𝐄𝐋𝐎𝐃𝐘𝐒𝐇𝐄𝐄𝐏
  • 36:34 - 36:34
    ᴄᴀᴘᴛɪ
    𝐇𝐀𝐍𝐃 𝐂𝐑𝐀𝐅𝐓𝐄𝐃 𝐁𝐘 𝐌𝐄𝐋𝐎𝐃𝐘𝐒𝐇𝐄𝐄𝐏
  • 36:34 - 36:34
    ᴄᴀᴘᴛɪᴏ
    𝐇𝐀𝐍𝐃 𝐂𝐑𝐀𝐅𝐓𝐄𝐃 𝐁𝐘 𝐌𝐄𝐋𝐎𝐃𝐘𝐒𝐇𝐄𝐄𝐏
  • 36:34 - 36:34
    ᴄᴀᴘᴛɪᴏɴ

    𝐇𝐀𝐍𝐃 𝐂𝐑𝐀𝐅𝐓𝐄𝐃 𝐁𝐘 𝐌𝐄𝐋𝐎𝐃𝐘𝐒𝐇𝐄𝐄𝐏
  • 36:34 - 36:34
    ᴄᴀᴘᴛɪᴏɴɪ
    ᴠʀ
    𝐇𝐀𝐍𝐃 𝐂𝐑𝐀𝐅𝐓𝐄𝐃 𝐁𝐘 𝐌𝐄𝐋𝐎𝐃𝐘𝐒𝐇𝐄𝐄𝐏
  • 36:34 - 36:34
    ᴄᴀᴘᴛɪᴏɴɪs
    ᴠʀɢ
    𝐇𝐀𝐍𝐃 𝐂𝐑𝐀𝐅𝐓𝐄𝐃 𝐁𝐘 𝐌𝐄𝐋𝐎𝐃𝐘𝐒𝐇𝐄𝐄𝐏
  • 36:34 - 36:34
    ᴄᴀᴘᴛɪᴏɴɪsᴛ
    ᴠʀɢᴛ
    𝐇𝐀𝐍𝐃 𝐂𝐑𝐀𝐅𝐓𝐄𝐃 𝐁𝐘 𝐌𝐄𝐋𝐎𝐃𝐘𝐒𝐇𝐄𝐄𝐏
  • 36:34 - 36:34
    ᴄᴀᴘᴛɪᴏɴɪsᴛ :
    ᴠʀɢᴛɪ

    𝐇𝐀𝐍𝐃 𝐂𝐑𝐀𝐅𝐓𝐄𝐃 𝐁𝐘 𝐌𝐄𝐋𝐎𝐃𝐘𝐒𝐇𝐄𝐄𝐏
  • 36:34 - 36:34
    ᴄᴀᴘᴛɪᴏɴɪsᴛ :
    ᴠʀɢᴛɪᴄ
    ᴇʀ
    𝐇𝐀𝐍𝐃 𝐂𝐑𝐀𝐅𝐓𝐄𝐃 𝐁𝐘 𝐌𝐄𝐋𝐎𝐃𝐘𝐒𝐇𝐄𝐄𝐏
  • 36:34 - 36:34
    ᴄᴀᴘᴛɪᴏɴɪsᴛ :
    ᴠʀɢᴛɪᴄs
    ᴇʀɪ
    𝐇𝐀𝐍𝐃 𝐂𝐑𝐀𝐅𝐓𝐄𝐃 𝐁𝐘 𝐌𝐄𝐋𝐎𝐃𝐘𝐒𝐇𝐄𝐄𝐏
  • 36:34 - 36:34
    ᴄᴀᴘᴛɪᴏɴɪsᴛ :
    ᴠʀɢᴛɪᴄs
    ᴇʀɪᴄ

    𝐇𝐀𝐍𝐃 𝐂𝐑𝐀𝐅𝐓𝐄𝐃 𝐁𝐘 𝐌𝐄𝐋𝐎𝐃𝐘𝐒𝐇𝐄𝐄𝐏
  • 36:34 - 36:34
    ᴄᴀᴘᴛɪᴏɴɪsᴛ :
    ᴠʀɢᴛɪᴄs
    ᴇʀɪᴄᴋ
    ᴋɪ
    𝐇𝐀𝐍𝐃 𝐂𝐑𝐀𝐅𝐓𝐄𝐃 𝐁𝐘 𝐌𝐄𝐋𝐎𝐃𝐘𝐒𝐇𝐄𝐄𝐏
  • 36:34 - 36:34
    ᴄᴀᴘᴛɪᴏɴɪsᴛ :
    ᴠʀɢᴛɪᴄs
    ᴇʀɪᴄᴋs
    ᴋɪʟ
    𝐇𝐀𝐍𝐃 𝐂𝐑𝐀𝐅𝐓𝐄𝐃 𝐁𝐘 𝐌𝐄𝐋𝐎𝐃𝐘𝐒𝐇𝐄𝐄𝐏
  • 36:34 - 36:34
    ᴄᴀᴘᴛɪᴏɴɪsᴛ :
    ᴠʀɢᴛɪᴄs
    ᴇʀɪᴄᴋsᴏ
    ᴋɪʟʟ
    𝐇𝐀𝐍𝐃 𝐂𝐑𝐀𝐅𝐓𝐄𝐃 𝐁𝐘 𝐌𝐄𝐋𝐎𝐃𝐘𝐒𝐇𝐄𝐄𝐏
  • 36:34 - 36:34
    ᴄᴀᴘᴛɪᴏɴɪsᴛ :
    ᴠʀɢᴛɪᴄs
    ᴇʀɪᴄᴋsᴏᴀ
    ᴋɪʟʟᴇ
    𝐇𝐀𝐍𝐃 𝐂𝐑𝐀𝐅𝐓𝐄𝐃 𝐁𝐘 𝐌𝐄𝐋𝐎𝐃𝐘𝐒𝐇𝐄𝐄𝐏
  • 36:34 - 36:35
    ᴄᴀᴘᴛɪᴏɴɪsᴛ :
    ᴠʀɢᴛɪᴄs
    ᴇʀɪᴄᴋsᴏᴀʀ
    ᴋɪʟʟᴇʀ
    𝐇𝐀𝐍𝐃 𝐂𝐑𝐀𝐅𝐓𝐄𝐃 𝐁𝐘 𝐌𝐄𝐋𝐎𝐃𝐘𝐒𝐇𝐄𝐄𝐏
  • 36:35 - 36:35
    ᴄᴀᴘᴛɪᴏɴɪsᴛ :
    ᴠʀɢᴛɪᴄs
    ᴇʀɪᴄᴋsᴏᴀʀᴇ
    ᴋɪʟʟᴇʀɢ
    𝐇𝐀𝐍𝐃 𝐂𝐑𝐀𝐅𝐓𝐄𝐃 𝐁𝐘 𝐌𝐄𝐋𝐎𝐃𝐘𝐒𝐇𝐄𝐄𝐏
  • 36:35 - 36:35
    ᴄᴀᴘᴛɪᴏɴɪsᴛ :
    ᴠʀɢᴛɪᴄs
    ᴇʀɪᴄᴋsᴏᴀʀᴇs
    ᴋɪʟʟᴇʀɢʜ
    𝐇𝐀𝐍𝐃 𝐂𝐑𝐀𝐅𝐓𝐄𝐃 𝐁𝐘 𝐌𝐄𝐋𝐎𝐃𝐘𝐒𝐇𝐄𝐄𝐏
  • 36:35 - 36:35
    ᴄᴀᴘᴛɪᴏɴɪsᴛ :
    ᴠʀɢᴛɪᴄs
    ᴇʀɪᴄᴋsᴏᴀʀᴇs3
    ᴋɪʟʟᴇʀɢʜᴏ
    𝐇𝐀𝐍𝐃 𝐂𝐑𝐀𝐅𝐓𝐄𝐃 𝐁𝐘 𝐌𝐄𝐋𝐎𝐃𝐘𝐒𝐇𝐄𝐄𝐏
  • 36:35 - 36:35
    ᴄᴀᴘᴛɪᴏɴɪsᴛ :
    ᴠʀɢᴛɪᴄs
    ᴇʀɪᴄᴋsᴏᴀʀᴇs3
    ᴋɪʟʟᴇʀɢʜᴏᴜ
    𝐇𝐀𝐍𝐃 𝐂𝐑𝐀𝐅𝐓𝐄𝐃 𝐁𝐘 𝐌𝐄𝐋𝐎𝐃𝐘𝐒𝐇𝐄𝐄𝐏
  • 36:35 - 36:37
    ᴄᴀᴘᴛɪᴏɴɪsᴛ :
    ᴠʀɢᴛɪᴄs
    ᴇʀɪᴄᴋsᴏᴀʀᴇs3
    ᴋɪʟʟᴇʀɢʜᴏᴜʟ
    𝐇𝐀𝐍𝐃 𝐂𝐑𝐀𝐅𝐓𝐄𝐃 𝐁𝐘 𝐌𝐄𝐋𝐎𝐃𝐘𝐒𝐇𝐄𝐄𝐏
  • 36:37 - 36:41
    𝐇𝐀𝐍𝐃 𝐂𝐑𝐀𝐅𝐓𝐄𝐃 𝐁𝐘 𝐌𝐄𝐋𝐎𝐃𝐘𝐒𝐇𝐄𝐄𝐏
  • 36:41 - 36:43
    𝐇𝐀𝐍𝐃 𝐂𝐑𝐀𝐅𝐓𝐄𝐃 𝐁𝐘 𝐌𝐄𝐋𝐎𝐃𝐘𝐒𝐇𝐄𝐄𝐏
    Sᴜᴘᴘᴏʀᴛᴇᴅ ʙʏ
  • 36:43 - 36:49
    𝐇𝐀𝐍𝐃 𝐂𝐑𝐀𝐅𝐓𝐄𝐃 𝐁𝐘 𝐌𝐄𝐋𝐎𝐃𝐘𝐒𝐇𝐄𝐄𝐏
    Sᴜᴘᴘᴏʀᴛᴇᴅ ʙʏ
    Protocol Labs
  • 36:49 - 36:50
    Sᴜᴘᴘᴏʀᴛᴇᴅ ʙʏ
    Protocol Labs
    ɴᴀʀʀᴀᴛᴇᴅ ʙʏ
  • 36:50 - 36:51
    Protocol Labs
    ɴᴀʀʀᴀᴛᴇᴅ ʙʏ
    Will Crowley
  • 36:51 - 36:53
    ɴᴀʀʀᴀᴛᴇᴅ ʙʏ
    Will Crowley
    ᴄᴏɴᴄᴇᴘᴛ, ᴍᴜsɪᴄ, & ᴠɪsᴜᴀʟs ʙʏ
  • 36:53 - 36:54
    Will Crowley
    ᴄᴏɴᴄᴇᴘᴛ, ᴍᴜsɪᴄ, & ᴠɪsᴜᴀʟs ʙʏ
    Melodysheep (John D. Boswell)
  • 36:54 - 36:55
    ᴄᴏɴᴄᴇᴘᴛ, ᴍᴜsɪᴄ, & ᴠɪsᴜᴀʟs ʙʏ
    Melodysheep (John D. Boswell)
    ᴡɪᴛʜ ᴀᴅᴅɪᴛɪᴏɴᴀʟ ᴠɪsᴜᴀʟs ʙʏ
  • 36:55 - 36:56
    Melodysheep (John D. Boswell)
    ᴡɪᴛʜ ᴀᴅᴅɪᴛɪᴏɴᴀʟ ᴠɪsᴜᴀʟs ʙʏ
    Lynn Huberty
  • 36:56 - 36:57
    ᴡɪᴛʜ ᴀᴅᴅɪᴛɪᴏɴᴀʟ ᴠɪsᴜᴀʟs ʙʏ
    Lynn Huberty
    Tim Stupak
  • 36:57 - 36:57
    Lynn Huberty
    Tim Stupak
    NASA
  • 36:57 - 36:59
    Tim Stupak
    NASA
    Evolve
  • 36:59 - 37:00
    NASA
    Evolve
    sᴏᴜɴᴅʙɪᴛᴇs ꜰʀᴏᴍ
  • 37:00 - 37:01
    Evolve
    sᴏᴜɴᴅʙɪᴛᴇs ꜰʀᴏᴍ
    Nick Lane
  • 37:01 - 37:02
    sᴏᴜɴᴅʙɪᴛᴇs ꜰʀᴏᴍ
    Nick Lane
    Jonathan Losos
  • 37:02 - 37:02
    Nick Lane
    Jonathan Losos
    Caleb Scharf
  • 37:02 - 37:03
    Jonathan Losos
    Caleb Scharf
    Jack Cohen
  • 37:03 - 37:05
    Caleb Scharf
    Jack Cohen
    Jill Tarter
  • 37:05 - 37:06
    Jack Cohen
    Jill Tarter
    sᴘᴇᴄɪᴀʟ ᴛʜᴀɴᴋs ᴛᴏ
  • 37:06 - 37:07
    Jill Tarter
    sᴘᴇᴄɪᴀʟ ᴛʜᴀɴᴋs ᴛᴏ
    Juan Benet
  • 37:07 - 37:07
    sᴘᴇᴄɪᴀʟ ᴛʜᴀɴᴋs ᴛᴏ
    Juan Benet
    Rowdy Jansen
  • 37:07 - 37:08
    Juan Benet
    Rowdy Jansen
    Lynn Huberty
  • 37:08 - 37:09
    Rowdy Jansen
    Lynn Huberty
    Tim Stupak
  • 37:09 - 37:10
    Lynn Huberty
    Tim Stupak
    Joel Edwards
  • 37:10 - 37:11
    Tim Stupak
    Joel Edwards
    Melodysheep Patreon supporters
  • 37:11 - 37:12
    Joel Edwards
    Melodysheep Patreon supporters
    sᴜᴘᴘᴏʀᴛ ᴛʜɪs ᴘʀᴏᴅᴜᴄᴛɪᴏɴ ᴀᴛ
  • 37:12 - 37:14
    Melodysheep Patreon supporters
    sᴜᴘᴘᴏʀᴛ ᴛʜɪs ᴘʀᴏᴅᴜᴄᴛɪᴏɴ ᴀᴛ
    patreon.com/melodysheep
  • 37:14 - 37:14
    sᴜᴘᴘᴏʀᴛ ᴛʜɪs ᴘʀᴏᴅᴜᴄᴛɪᴏɴ ᴀᴛ
    patreon.com/melodysheep
    Melodysheep.com
  • 37:14 - 37:15
    patreon.com/melodysheep
    Melodysheep.com
    Twitter: @musicalscience
  • 37:15 - 37:17
    Melodysheep.com
    Twitter: @musicalscience
    Instagram: @melodysheep
  • 37:17 - 37:18
    Twitter: @musicalscience
    Instagram: @melodysheep
    ᵃⁿ
  • 37:18 - 37:19
    Instagram: @melodysheep
    ᵃⁿ
    Amber Mountain Studios
  • 37:19 - 37:28
    ᵃⁿ
    Amber Mountain Studios
    ᴘʀᴏᴅᴜᴄᴛɪᴏɴ
  • 37:30 - 37:37
    ɴᴇxᴛ ᴏɴ ʟɪꜰᴇ ʙᴇʏᴏɴᴅ:
    Making contact with intelligent life
    Intergalactic civilizations
    Surviving the end of the universe
  • 37:39 - 37:46
    sᴏᴜɴᴅᴛʀᴀᴄᴋ ᴄᴏᴍɪɴɢ ᴛᴏ ᴀʟʟ ᴍᴀᴊᴏʀ ᴍᴜsɪᴄ ᴘʟᴀᴛꜰᴏʀᴍs
  • 37:47 - 37:54
    sᴜᴘᴘᴏʀᴛ ᴛʜᴇ ɴᴇxᴛ ᴄʜᴀᴘᴛᴇʀ ᴀᴛ:
    patreon.com/melodysheep
Title:
LIFE BEYOND II: The Museum of Alien Life (4K)
Description:

Soundtrack: https://bit.ly/3lo7cnH Support this project on Patreon: http://patreon.com/melodysheep

What if there was a museum that contained every type of life form in the universe? This experience takes you on a tour through the possible forms alien life might take, from the eerily familiar to the utterly exotic, ranging from the inside of the Earth to the most hostile corners of the universe.

New research is upending our idea of life and where it could be hiding: not just on Earth-like planets, where beings could mimic what our planet has produced, but in far flung places like the hearts of dead stars and the rings of gas giant planets. Nowhere in the universe is off limits.

Only when we know what else is out there will we truly know ourselves. This thought experiment will give us a glimpse into what could be out there, how we might find it, and just how far nature’s imagination might stretch.

Big thanks to Protocol Labs for their continued support of this series: https://protocol.ai.

Concept, visuals, and score by melodysheep, aka John D. Boswell. Narrated by Will Crowley. Additional visuals by Lynn Huberty, Tim Stupak, NASA, and Evolve. Featuring soundbites from Nick Lane, Jonathan Losos, Caleb Scharf, Jack Cohen, and Jill Tarter.

Featuring clips from Lynn Huberty’s amazing film “SHYAMA”: https://bit.ly/3d6xtUF

Thanks especially to:
Lynn Huberty
Juan Benet
Rowdy Jansen
Eddy Adams: http://www.eddyadams.com
Kimi Ushida: http://Eff.org
Gregory Cohen: www.DesignFirebrand.com
Eric Capuano: http://reconinfosec.com
John Maier
Logan
Ali Aljumayd
Caleb Levesque
Eric Malette
Brandon Sanders
Tim Stupak

And to all my supporters on Patreon: Ada Cerna, Adam Orand, Ajish Balakrishnan, Aksel Tjønn, Ali Akın Kurnaz, Andrew Edwards, Andrew Valenti, Antoine C, Antoni Simelio, Augustas Babelis, Bhisham Mahtani, Bradley Gallant, Brant Stokes, Daniel Saltzman, Caleb Levesque, Case K., Cheshire 2e du nom, Chinmay Kumar, Chris Wilken, Christian Oehne, Christina Winikoff, Christopher Heald, Chung Tran, Colin Glover, Corentin Kerisit, Cozza38, Crystal, Dan Alvesved, Danaos Christopoulos, Dave LeCompte, Davee Hallinan, David Lyneham, david p boswell, David Southpaw, denise frey, Derick Yan, Dexter, dixon1829, Don Loristo, Dylan Webb, Eico Neumann, Eyubed Balcha, Ezri Dax, Gaétan Marras, Gary Wei, geekiskhan, Genesplicer, Giulia C., Håkon A. Hjortland, Hans Husurianto, Henry R. Seymour, Heribert Breidsamer, ilkercan Kaya, Iota Katari, is8ac, Jackie Pham, James O'Connor, Jayson Hale, Jean Neyrial, Jessica Turner, Jimpy, JM_Borg, Jordan Swickard, Jose Contreras, Joshua Oram, JousterL, Julian Büttner, Julio Hernández Camero, kaynen brown, Kristin & Alan Cameron, Laine Boswell, Lars Støttrup Nielsen, Laura, Laura Liddington, Layne Burnett, LemonHead, Lennart Klootwijk, Leo Botinelly, Leonard van Vliet, lloll887, Manu Galán García, Maraiu, Marco Cardamone, Mark Christopher, Mark T., Markus Oinonen, Marlin Balzer, Martin Majernik, Matthew Jacoby, Matthew Ullrich, Maxime Marois, Mehdi Bennani, Michael Li, Michelle Wilcox, Mike Norkus, Mind Wave, Mitchel Humpherys, Mohammed Aldaabil, Nathan, Nicholas Martin, Nikita Temryazansky, Nina Atesh, Nina Barton, Ninel, Patrick Keim, Patrick Schouten, Peycho Ivanov, PonWer, Preston Maness, Radu Turcan, Ramsey Elbasheer, Randall Bollig, Raz, RedOptics, Reg Reyes, Richard Sundvall, Richard Williams, Rob Phillips, Robin Kuenkel, Runi Winther Johnsen, Samih Fadli, Sandra, Sandro Heinimann, Scarlet Fortuna, Silas Rech, SilverFolfy, Smoka_Lad, SpartanLegends, Stefan, SunaScorpion, SymeSynth, The Cleaner, The Fellowship of Doge, TheHumungus, Timothé Wegiersky, Timothy E Plum, Trevor Robertson, Verissimus, Vinh Vo, Virgile Coulot, Whitney Champion, William Ronholm, Wise Doane, Wolfgang Bernecker, Yannic, ZAB, Алексей Козловский

Sources coming soon.

Peace and love,

melodysheeep
http://melodysheep.com
twitter: @musicalscience
instagram: @melodysheep_

more » « less
Video Language:
English
Duration:
38:00

English subtitles

Revisions Compare revisions