-
Not Synced
As a roboticist,
I get asked a lot of questions.
-
Not Synced
"When we will they start
serving me breakfast?"
-
Not Synced
So I thought the future of robotics
would be looking more like us.
-
Not Synced
I thought they would look like me,
-
Not Synced
so that I built eyes
that would simulate my eyes,
-
Not Synced
I built fingers that are dextrous enough
to serve me baseballs.
-
Not Synced
Classical robots like this are built
-
Not Synced
and can function based on
the fixed number of joints and actuators,
-
Not Synced
and this means their
functionality and shape
-
Not Synced
are already fixed at the moment
of their conception.
-
Not Synced
So even though this arm
has really nice throw,
-
Not Synced
to even hit the tripod at the end,
-
Not Synced
it's not meant for cooking you
breakfast per se.
-
Not Synced
It's not really suited for scrambled eggs.
-
Not Synced
So this was when I was hit
by a new vision of future robotics:
-
Not Synced
the transformers.
-
Not Synced
They drive, they run, they fly
-
Not Synced
all depending on the ever-changing
new environment and task at hand.
-
Not Synced
To make this a reality,
-
Not Synced
you really have to rethink
how robots are designed.
-
Not Synced
So imagine a robotic module
in a polygon shape
-
Not Synced
and using that simple polygon shape
to reconstruct multiple different forms
-
Not Synced
to create a new form of robot
for different tasks.
-
Not Synced
In CG, computer graphics,
it's not only news,
-
Not Synced
it's been done for a while, and that's how
most of the movies are made.
-
Not Synced
But if you're trying to make a robot
that's physically moving,
-
Not Synced
it's a completely new story.
-
Not Synced
It's a completely new paradigm.
-
Not Synced
But you've all done this.
-
Not Synced
Who hasn't made a paper airplane,
paper boat, paper crane.
-
Not Synced
Origami is a versatile
platform for designers.
-
Not Synced
From a single sheet of paper,
you can make multiple shapes,
-
Not Synced
and if you don't like it,
you unfold and fold back again.
-
Not Synced
Any 3D form can be made
from 2D surfaces by folding,
-
Not Synced
and this is proven mathematically.
-
Not Synced
And imagine if you were to have
an intelligent sheet
-
Not Synced
that can self-fold into any form it wants
-
Not Synced
anytime.
-
Not Synced
And that's what I've been working on,
-
Not Synced
and I call this robotic origami
-
Not Synced
"robogami."
-
Not Synced
This is our first robogami transformation
-
Not Synced
that was made by me about 10 years ago.
-
Not Synced
From a flat-sheeted robot,
-
Not Synced
it turns into a pyramid
and back into a flat sheet
-
Not Synced
and into a space shuttle.
-
Not Synced
Quite cute.
-
Not Synced
Ten years later, with my group
of ninja origami robotic researchers,
-
Not Synced
and there about 22 of them right now,
-
Not Synced
we have a new generation of robogamis,
-
Not Synced
and they're a little more effective
and we do more than that.
-
Not Synced
So the new generation of robogamis
actually serve a purpose.
-
Not Synced
For example, this one actually navigates
through different terrains autonomously.
-
Not Synced
So when it's a dry
and flat land, it crawls.
-
Not Synced
And if it meets some rough terrain,
it starts rolling.
-
Not Synced
It does this, it's the same robot,
-
Not Synced
but depending on which terrain it meets,
-
Not Synced
it activates a different sequence
of actuators that's on board.
-
Not Synced
And once it meets and obstacle,
it jumps over it.
-
Not Synced
It does this by storing energy
in each of its legs
-
Not Synced
and releasing it and catapulting
like a slingshot.
-
Not Synced
And it even does gymastics.
-
Not Synced
Yay.
-
Not Synced
So I just showed you
what a single robogami can do.
-
Not Synced
Imagine what they can do as a group.
-
Not Synced
They can join forces to tackle
more complex tasks.
-
Not Synced
Each module either active or passive,
-
Not Synced
we can assemble them
to create different shapes.
-
Not Synced
Not only that, by controlling
the folding joints, we are able
-
Not Synced
to create and attack different tasks.
-
Not Synced
The form is making new task space.
-
Not Synced
And this time, what is most
important is the assembly.
-
Not Synced
They need to autonomously
find each other in a different space,
-
Not Synced
attach and detach depending on
the environment and task.
-
Not Synced
And we can do this now.
-
Not Synced
So what's next?
-
Not Synced
Our imagination.
-
Not Synced
So this is a simulation of what
you can achieve with this type of module.
-
Not Synced
So we decided that we were going
to have a four-legged crawler
-
Not Synced
turning into a little dog
and making small gaits.
-
Not Synced
With the same module, we can actually
make it do something else:
-
Not Synced
a manipulator, a typical
classic robot task.
-
Not Synced
So with a manipulator,
it can pick an object.
-
Not Synced
Of course, you can add more modules
to make the manipulator legs longer,
-
Not Synced
to attack or pick up
objects that are bigger or smaller,
-
Not Synced
or even have a third arm.
-
Not Synced
For robogamis, there's no
one fix shape nor task.
-
Not Synced
They can transform into anything
anywhere anytime.
-
Not Synced
So how do you make them?
-
Not Synced
The biggest technical challenge
of robogami is keeping them super-thin,
-
Not Synced
flexible, but still remaining functional.
-
Not Synced
They're composed of multiple layers
of circuits, motors,
-
Not Synced
micro-controllers and sensors,
all in the single body,
-
Not Synced
and when you control
individual folding joints,
-
Not Synced
you'll be able to achieve
soft motions like that
-
Not Synced
upon your command.
-
Not Synced
Instead of being a single robot that is
specifically made for a single task,
-
Not Synced
robogamis are optimized
to do multi-tasks,
-
Not Synced
and this is quite important
-
Not Synced
for the difficult and unique
environments on the Earth
-
Not Synced
as well as in space.
-
Not Synced
Space is a perfect
environment for robogamis.
-
Not Synced
You cannot afford to have
one robot for one task.
-
Not Synced
Who knows how many tasks
you will encounter in space?
-
Not Synced
What you want is a single robotic platform
that can transform to do multi-tasks.
-
Not Synced
What we want is a deck
of thin robogami modules
-
Not Synced
that can transform to do multiples
of performing tasks.
-
Not Synced
So here, and don't take my word for it,
-
Not Synced
because it's the European Space Agency
and Swiss Space Center
-
Not Synced
are sponsoring this exact concept.
-
Not Synced
So here you see a couple of images
of reconfiguration of robogamis,
-
Not Synced
exploring the foreign land
aboverground, on the surface,
-
Not Synced
as well as digging into the surface.
-
Not Synced
It's not just exploration.
-
Not Synced
For astronauts, they need additional help,
-
Not Synced
because you cannot afford
to bring interns up there either.
-
Not Synced
They have to do every tedious task.
-
Not Synced
It may be simple, but super-interactive.
-
Not Synced
So you need robots
to facilitate their experiments,
-
Not Synced
assisting them with the communications,
-
Not Synced
and just docking onto surfaces to be
their third arm holding different tools.
-
Not Synced
But how will they be able
to control robogamis, for example,
-
Not Synced
outside the space station?
-
Not Synced
In this case, I show a robogami
that is holding a space debris.
-
Not Synced
You can work with your vision
so that you can control them,
-
Not Synced
but what would be better
is having the sensation of touch
-
Not Synced
directly transported onto
the hands of the astronauts.
-
Not Synced
And what you need is a haptic device,
-
Not Synced
a haptic interface that recreates
the sensation of touch.
-
Not Synced
And using robogamis, we can do this.
-
Not Synced
This is the world's
smallest haptic interface
-
Not Synced
that can recreate a sensation of touch
just underneath your fingertip.
-
Not Synced
We do this by moving the robogami
-
Not Synced
By microscopic and macroscopic
movements at the stage,
-
Not Synced
and by having this, not only
will you be able to feel
-
Not Synced
how big the object is,
-
Not Synced
the roundness and the lines,
-
Not Synced
but also the stiffness and the texture.
-
Not Synced
Alex has this interface
just underneath his thumb,
-
Not Synced
and if he were to use this
with a VR goggles and hand controllers,
-
Not Synced
now the virtual reality
is no longer virtual.
-
Not Synced
It becomes a tangible reality.
-
Not Synced
The blue ball, red ball,
and black ball that he's looking
-
Not Synced
is no longer differentiated by colors.
-
Not Synced
Now it is a rubber blue ball,
sponge red ball, and billiard black ball.
-
Not Synced
This is now possible.
-
Not Synced
Let me show you.
-
Not Synced
This is really the first time
this is shown live
-
Not Synced
in front of a public grand audience,
-
Not Synced
so hopefully this works.
-
Not Synced
So what you see here
is an atlas of anatomy,
-
Not Synced
and the robogami haptic interface.
-
Not Synced
So, like all the other
reconfigurable robots,
-
Not Synced
it multitasks.
-
Not Synced
Not only is it going to serve as a mouse,
-
Not Synced
but also a haptic interface.
-
Not Synced
So for example, we have a white background
where there is no object.
-
Not Synced
That means there is nothing to feel,
-
Not Synced
so we can have a very,
very flexible interface.
-
Not Synced
Now I use this as a mouse
to approach a skin,
-
Not Synced
a muscular arm,
so now let's feel his biceps,
-
Not Synced
or shoulders.
-
Not Synced
So now you see how stiffer it becomes.
-
Not Synced
Let's explore even more.
-
Not Synced
Let's approach the ribcage,
-
Not Synced
and as soon as I move
on top of the ribcage
-
Not Synced
and between the ?? muscles,
-
Not Synced
which is softer and harder, I can feel
the difference of the stiffness.
-
Not Synced
Take my word for it.
-
Not Synced
So now you see it's much stiffer
in terms of the force
-
Not Synced
it's giving back to my fingertip.
-
Not Synced
So I showed you the surfaces
that's not moving.
-
Not Synced
How about if I were to approach
something that moves,
-
Not Synced
for example like a beating heart?
-
Not Synced
What would I feel?
-
Not Synced
(Applause)
-
Not Synced
This can be your beating heart.
-
Not Synced
This can actually be inside your pocket
-
Not Synced
while you're shopping online.
-
Not Synced
Now you'll be able to feel the difference
of the sweater that you're buying,
-
Not Synced
how soft it is,
-
Not Synced
if it's actually cashmere or not,
-
Not Synced
or the bagel that you're trying to buy,
-
Not Synced
how hard it is or how crispy it is.
-
Not Synced
This is now possible.
-
Not Synced
The robotics technology is advancing
to be more personalized and adaptive,
-
Not Synced
to adapt to our everyday needs.
-
Not Synced
This unique specie
of reconfigurable robotics
-
Not Synced
is actually the platform to provide
this invisible, intuitive interface
-
Not Synced
to meet our exact needs.
-
Not Synced
These robots will no longer look like
the characters from the movies.
-
Not Synced
Instead, they will be whatever
you want them to be.
-
Not Synced
Thank you.
-
Not Synced
(Applause)