< Return to Video

Pereemeter n Aurie Baseecs

  • 0:00 - 0:07
    This video is aneat Pereemeter n Aurie,
  • 0:08 - 0:11
    Ah'l dae Pereemeter oan the cair
    n Aurie oan the richt.
  • 0:11 - 0:16
    Ye'r proablie fameeliair wi the idea,
    bit we'l revisit it in case ye'r no.
  • 0:16 - 0:21
    Pereemeter is the distance
    tae gae around somit,
  • 0:21 - 0:24
    Gif ye were tae pit ae fence aroond
    or measure somit.
  • 0:24 - 0:28
    Gif ye wer tae pit ae tape roond ae figure
    hou lang that tape wid be.
  • 0:28 - 0:35
    Sae, gif Ah hae ae rectangle,
    n ae rectangle is ae figure
  • 0:35 - 0:40
    that haes fower n fower richt angles.
  • 0:40 - 0:47
    This is ae rectangle here,
    Ah hae, 1, 2, 3, 4 richt angles n 4 sides,
  • 0:47 - 0:54
    n the opposite sides ar equal in langth.
  • 0:54 - 1:01
    Mibbe Ah'l lable the points,
    A, B, C, n D,
  • 1:01 - 1:03
    n lat's say that we ken the folaein,
  • 1:03 - 1:07
    we ken that AB = 7,
  • 1:07 - 1:13
    n we ken that BC is equal tae 5.
  • 1:13 - 1:17
    We want tae ken whit
    the pereemeter o ABCD is.
  • 1:17 - 1:26
    The pereemeter o rectangle ABCD
    is equal tae
  • 1:26 - 1:28
    the sum o the langth o the sides.
  • 1:28 - 1:30
    Gif Ah wis tae big ae fence
  • 1:32 - 1:35
    Ah'd hae tae mesure hou lang this side is,
  • 1:35 - 1:37
    we awreadie ken that that's 7,
  • 1:39 - 1:46
    That side ower thaur is 7 units lang,
    7 plus, this langth wil be 5,
  • 1:46 - 1:51
    Thay tell us that BC is 5,
    DC is gaun tae be
  • 1:51 - 1:54
    the same langth aes AB,
    n that's 7 again.
  • 1:56 - 2:01
    Sae DA or AD whitiver ye want tae caa it,
    wid be the same langth aes BC,
  • 2:01 - 2:04
    n that's 5 again,
    sae plus 5 again.
  • 2:04 - 2:08
    Sae ye hae 7 plus 5 is 12,
    plus 7 plus 5 is 12 again,
  • 2:08 - 2:14
    sae ye'r gaun tae hae ae pereemeter o 24.
  • 2:14 - 2:19
    Ye coud gae the ither road,
    lat's say that ye hae ae square
  • 2:19 - 2:25
    This is ae byordinair case o ae rectangle,
    ae square haes 4 sides
  • 2:25 - 2:29
    n 4 richt angles n aw o the sides ar equal
  • 2:29 - 2:37
    Sae lat me draw ae square here,
    ma best attempt.
  • 2:37 - 2:46
    Sae this is A, B, C, D, n we'r
    gaun tae say that this is ae square,
  • 2:46 - 2:57
    n lat's say that this square
    haes ae pereemeter o 36.
  • 2:57 - 3:02
    Sae, whits the langth o the 4 sides,
    weel aw o the sides hae the same langth,
  • 3:02 - 3:10
    Lat's caa thaim x, sae gif AB is x,
    than BC is x, than DC is x, n AD is x.
  • 3:10 - 3:13
    Aw o thir sides ar congruent,
    thay aw hae the same langth,
  • 3:13 - 3:17
    We caa that x, sae gif we want
    tae fynd oot the pereemeter
  • 3:17 - 3:29
    it'l be x + x + x + x, or 4x,
    n that equals 36,
  • 3:29 - 3:33
    thay gave us that in the proablem,
    n tae solve this 4 * sommit is 36,
  • 3:33 - 3:35
    ye coud solve that in ye'r heid,
  • 3:35 - 3:42
    bit we coud deevide baith sides bi 4,
    n ye get x = 9,
  • 3:42 - 3:47
    sae this is ae 9 bi 9 square,
    this width is 9,
  • 3:47 - 3:51
    this is 9, n the heicht here
    is 9 n aw.
  • 3:51 - 3:53
    Sae that's pereemeter,
  • 3:53 - 3:58
    Aurie is ae mesure o hou muckle space
    dis this tak up in twa dimentions.
  • 3:58 - 4:05
    N yin waa tae think oan aurie is
    gif Ah hae 1 bi 1 square,
  • 4:05 - 4:08
    N whan Ah say 1 bi 1
    it means that ye yinlie hae tae speceefie
  • 4:08 - 4:12
    2 dimentions fer ae square or rectangle,
    cause the ither 2 ar gaun tae be the sam.
  • 4:12 - 4:15
    Fer exaumple, ye coud caa this
    ae 5 bi 7 rectangle,
  • 4:15 - 4:18
    Cause richt awaa that says that
    this side is 5 n that side is 5,
  • 4:18 - 4:21
    this side is 7 n that side is 7,
  • 4:21 - 4:23
    N fer ae square ye coud say
    it's ae 1 bi 1 square
  • 4:23 - 4:26
    Cause that speceefies aw o the sides,
    ye coud realie say fer ae square
  • 4:26 - 4:34
    where 1 side is 1 than aw sides ar 1,
    sae this is ae 1 bi 1 square.
  • 4:34 - 4:37
    Ye can see the aurie o onie figure aes
  • 4:37 - 4:42
    hou monie 1 bi 1 squares
    can ye fit oan that figure?
  • 4:42 - 4:46
    Sae, fer exaumple, gif we were
    gaun back tae this rectangle here,
  • 4:46 - 4:49
    n Ah wantit tae fynd oot
    the aurie o this rectangle,
  • 4:49 - 4:53
    n the notation that we can uise fer aurie
    is tae pit sommit in brackets,
  • 4:53 - 5:00
    Sae the aurie o rectangle ABCD,
    A, B, C, D,
  • 5:00 - 5:04
    is equal tae the nummer o 1 bi 1 squares
    that we can fit oan this rectangle
  • 5:04 - 5:07
    Lats ettle tae dae that bi haund,
    Ah think... [Bletherin],
  • 5:09 - 5:14
    Lats pit nummer o 1 bi 1s, lat's see,
    we hae 5 1 bi 1 Squares this waa,
  • 5:14 - 5:17
    n 7 this waa, sae Ah'm gaun tae
    dae ma best tae draw it tydie,
  • 5:17 - 5:26
    Sae that's 1, 2, 3, 4, 5, 6,
    n than 7,
  • 5:26 - 5:29
    1, 2, 3, 4, 5, 6, 7,
  • 5:29 - 5:37
    Sae gaun alang 1 o the sides lik this,
    ye coud pit 7 alang 1 side.
  • 5:37 - 5:44
    N than ower here hou monie can we,
    lat's see, that's 1 raw, that's twa raws,
  • 5:44 - 5:51
    N we hae three raws, n than 4 raws,
    n than 5 raws, 1, 2, 3, 4, 5,
  • 5:51 - 5:55
    N that maks sence,
    caus this is 1, 1, 1, 1, 1,
  • 5:55 - 5:59
    Shid eik up tae 5,
    thir's 1, 1, 1, 1, 1, 1, 1,
  • 5:59 - 6:01
    Shid eik up tae 7,
    Ay, thaur's 7.
  • 6:01 - 6:05
    Sae this is 5 bi 7,
    n ye cou d coont thir,
  • 6:05 - 6:08
    n this is strechtfowerd multipleecation,
    gif ye wantit tae ken
  • 6:08 - 6:10
    the hale nummer o cubes,
    ye coud coont thaim,
  • 6:10 - 6:13
    or ye coud say, Ah hae 5 raws,
    7 coloumns,
  • 6:13 - 6:17
    Ah'm gaun tae hae 35 -- did Ah say cubes?,
    squares --
  • 6:17 - 6:20
    Ah hae 5 squares in this direction,
    n 7 in this direction,
  • 6:20 - 6:22
    Sae Ah'm gaun tae hae 35 squares aw up,
  • 6:22 - 6:27
    Sae the aurie o this figure is 35,
  • 6:27 - 6:31
    N sae the general methid, ye coud say,
    Ah'm gaun tae tak 1 dimention
  • 6:31 - 6:33
    n multiplie it bi the ither dimention
  • 6:33 - 6:44
    Sae gif Ah hae ae rectangle,
    lat's say the raectangle is 1/2 bi 2,
  • 6:44 - 6:47
    Thae ar it dimentions,
    ye can juist multiplie,
  • 6:47 - 6:50
    1/2 * 2, the aurie is gaun tae be 1.
  • 6:50 - 6:53
    Ye micht say, 'Whit dis 1/2 mean?',
  • 6:53 - 6:59
    In this dimention it means that
    Ah can yinlie fit 1/2 o ae 1 bi 1 square,
  • 6:59 - 7:02
    Sae gif Ah want tae dae ae hale
    1 bi 1 square, it's ae wee bit distortit,
  • 7:02 - 7:03
    it wid lui lik that.
  • 7:03 - 7:08
    Sae Ah'm yinlie daein 1/2 o 1,
    Ah'm daein anither 1/2 o 1 juist lik that,
  • 7:08 - 7:13
    n sae whan ye eik this n this thegeather,
    ye'r gaun tae get ae hale 1,
  • 7:13 - 7:16
    Nou, aneat the aurie o ae square,
  • 7:16 - 7:20
    weel ae square's juist ae byordinair case
    whaur the width n the langth ar the sam.
  • 7:20 - 7:24
    Sae gif Ah hae ae square,
    lat me draw ae square here.
  • 7:25 - 7:32
    Lat's caa that x, y, z, lat's mak it s.
  • 7:32 - 7:34
    Lat's say that Ah wantit
    tae fynd the aurie,
  • 7:34 - 7:38
    n lat's say that yin side here is 2,
    sae XS is equal tae twa,
  • 7:38 - 7:42
    n Ah want tae fynd the aurie o [XYZS],
  • 7:42 - 7:46
    sae yince mair Ah uised the brackets
    tae speceefie the aurie o this figure
  • 7:46 - 7:49
    o this poliegon here, this square,
    n we ken that it's ae square.
  • 7:49 - 7:51
    We ken that aw o the sides ar equal.
  • 7:51 - 7:53
    Weel, it's ae byordinair case
    o ae rectangle,
  • 7:53 - 7:56
    we multiplie the langth bi the width,
    we ken that thay'r the same thing,
  • 7:56 - 8:01
    Gif this is 2, than this is 2,
    sae ye juist multiplie 2 bi 2,
  • 8:01 - 8:03
    Or, gif ye want tae think o it
    ye square it,
  • 8:03 - 8:05
    That's whaur the word comes fae,
    squarein sommit.
  • 8:05 - 8:10
    Sae ye multiplie 2*2,
    that's equal tae 2 squared,
  • 8:10 - 8:13
    That's where the word comes fae,
    fyndin the aurie o ae square.
  • 8:13 - 8:16
    That's equal tae 4.
  • 8:16 - 8:24
    N ye can see that ye can easielie fit
    4 1 bi 1 squares oan this 2 bi 2 square.
Title:
Pereemeter n Aurie Baseecs
Description:

Defineetions o preemeter n aurie.

more » « less
Video Language:
English
Duration:
08:25

Scots subtitles

Revisions