Solving radical equations | Exponent expressions and equations | Algebra I | Khan Academy
-
0:00 - 0:02المطلوب منا الآن ان نحل المعادلة التالية
-
0:02 - 0:083 + الجذر التربيعي لـ 5x + 6 =
12 -
0:08 - 0:10والاستراتيجية التي سنتبعها لحل هذا النوع من
-
0:10 - 0:13المعادلات، هي ان نعزل العبارة الجذرية لوحدها في جانب
-
0:13 - 0:15ومن ثم يمكننا ان نقوم بتربيعها حتى
-
0:15 - 0:18نتخلص من رمز الجذر
-
0:18 - 0:20لكن علينا ان نكون حذرين هنا، لأنه عندما
-
0:20 - 0:23نقوم بتربيع رمز الجذر، سنفقد المعلومات التي تفيد
-
0:23 - 0:25بأننا نأخذ الجذر الاساسي، وليس
-
0:25 - 0:27الجذر التربيعي الموجب او السالب
-
0:27 - 0:30نحن فقط نأخذ الجذر التربيعي الموجب. لذلك
-
0:30 - 0:32عندما نحصل على الناتج النهائي، علينا ان نتأكد
-
0:32 - 0:36من انه استخراج للجذر التربيعي الموجب
-
0:36 - 0:38اذاً دعونا نحاول، دعونا نرى ما اتحدث عنه
-
0:38 - 0:40اول شيئ اريد القيام به، هو انني سأعزل
-
0:40 - 0:42هذا على جانب من المعادلة. وافضل طريقة للقيام بذلك
-
0:42 - 0:45هي التخلص من هذه الـ 3. وافضل طريقة للتخلص
-
0:45 - 0:48منها تكون من خلال طرح 3 من الجانب الايسر للمعادلة. و
-
0:48 - 0:50بالطبع اذا فعلت ذلك في الجانب الايسر، علي ان افعله
-
0:50 - 0:52في الجانب الايمن كذلك
-
0:52 - 0:55وليس علي ان اقول دائماً انهما متساويتان. اذاً
-
0:55 - 0:59الجانب الايسر يبسط الى
-
0:59 - 1:04الجذر التربيعي لـ 5x + 6 =
-
1:04 - 1:0812 - 3، ويساوي 9. والآن يمكننا
-
1:08 - 1:13ان نقوم بتربيع طرفي المعادلة. فيمكن تربيع
-
1:13 - 1:15الـ 5، الجذر التربيعي لـ 5x + 6
-
1:15 - 1:20ويمكننا تربيع الـ 9 ايضاً. وعندما نقوم بهذا
-
1:20 - 1:24او عندما نقوم بتربيع هذا، نحصل على 5x + 6
-
1:24 - 1:26اذا قمنا بتربيع الجذري التربيعي لـ 5x + 6
-
1:26 - 1:29نحصل على 5x + 6. وبهذا
-
1:29 - 1:32نفقد بعض المعلومات، لأننا نريد ان نحصل على
-
1:32 - 1:36هذا اذا قمنا بتربيع الجذر التربيعي السالب لـ 5x + 6
-
1:36 - 1:38ولهذا السبب علينا ان نكون حذرين في اجاباتنا
-
1:38 - 1:41ونتأكد من انها صحيحة عندما تكون المعادلة الرئيسية
-
1:41 - 1:44عبارة عن جذر تربيعي. اذاً حصلنا على
-
1:44 - 1:475x + 6 في الجانب الايسر، وفي الجانب الايمن
-
1:47 - 1:51لدينا 81. والآن هذه معادلة مباشرة
-
1:51 - 1:53واريد الىن ان اعزل عبارات x لوحدها. فأطرح
-
1:53 - 1:576 من طرفي المعادلة
-
1:57 - 2:01فنحصل في الجانب الايسر على 5x، وفي الجانب الايمن
-
2:01 - 2:05على 75. ثم يمكننا ان نقسم طرفي المعادلة على 5
-
2:05 - 2:11سأقوم بذلك، وتصبح المعادلة x = --دعونا نرى--
-
2:11 - 2:16هذا يساوي 15، اليس كذلك؟ 5×10=50
-
2:16 - 2:195×5=25، فيكون الناتج 75
-
2:19 - 2:22اذاً نحصل على x = 15. لكننا نريد --علينا ان
-
2:22 - 2:25نتأكد من ان هذا صحيح ويحقق المعادلة
-
2:25 - 2:27وربما انه
-
2:27 - 2:29سينجح اذا اخذنا --اذا كان هذا الجذر التربيعي السالب
-
2:29 - 2:31علينا ان نتأكد من ان الناتج صحيح
-
2:31 - 2:33عندما نطبقه على الجذر التربيعي الموجب
-
2:33 - 2:35اذاً دعونا نطبقه على المعادلة التي بين ايدينا. نحصل على
-
2:35 - 2:413 + الجذر التربيعي لـ 5 × 15
-
2:41 - 2:46اذاً 75 + 6
-
2:46 - 2:50كل ما فعلته هنا هو انني اخذت 5 × 25، واستبدلتها
-
2:50 - 2:53بالاجابة، اي تساوي 12. فنحصل على
-
2:53 - 2:563 + الجذر التربيعي لـ 75 + 6 = 81
-
2:56 - 3:01= 12. وهذا الجذر التربيعي
-
3:01 - 3:04لـ 81، اي يساوي 9 موجبة. اذاً 3+9
-
3:04 - 3:07=12، وبهذا نرى ان الناتج صحيح
-
3:07 - 3:10بامكاننا الآن ان نشعر شعوراً طيباً إزاء ذلك
- Title:
- Solving radical equations | Exponent expressions and equations | Algebra I | Khan Academy
- Description:
-
Solving Radical Equations
Practice this lesson yourself on KhanAcademy.org right now:
https://www.khanacademy.org/math/algebra/exponent-equations/radical_equations/e/radical_equations?utm_source=YT&utm_medium=Desc&utm_campaign=AlgebraIWatch the next lesson: https://www.khanacademy.org/math/algebra/exponent-equations/radical_equations/v/extraneous-solutions-to-radical-equations?utm_source=YT&utm_medium=Desc&utm_campaign=AlgebraI
Missed the previous lesson?
https://www.khanacademy.org/math/algebra/exponent-equations/simplifying-radical-expressions/v/how-to-rationalize-a-denominator?utm_source=YT&utm_medium=Desc&utm_campaign=AlgebraIAlgebra I on Khan Academy: Algebra is the language through which we describe patterns. Think of it as a shorthand, of sorts. As opposed to having to do something over and over again, algebra gives you a simple way to express that repetitive process. It's also seen as a "gatekeeper" subject. Once you achieve an understanding of algebra, the higher-level math subjects become accessible to you. Without it, it's impossible to move forward. It's used by people with lots of different jobs, like carpentry, engineering, and fashion design. In these tutorials, we'll cover a lot of ground. Some of the topics include linear equations, linear inequalities, linear functions, systems of equations, factoring expressions, quadratic expressions, exponents, functions, and ratios.
About Khan Academy: Khan Academy offers practice exercises, instructional videos, and a personalized learning dashboard that empower learners to study at their own pace in and outside of the classroom. We tackle math, science, computer programming, history, art history, economics, and more. Our math missions guide learners from kindergarten to calculus using state-of-the-art, adaptive technology that identifies strengths and learning gaps. We've also partnered with institutions like NASA, The Museum of Modern Art, The California Academy of Sciences, and MIT to offer specialized content.
For free. For everyone. Forever. #YouCanLearnAnything
Subscribe to Khan Academy’s Algebra channel:
https://www.youtube.com/channel/UCYZrCV8PNENpJt36V0kd-4Q?sub_confirmation=1
Subscribe to Khan Academy: https://www.youtube.com/subscription_center?add_user=khanacademy - Video Language:
- English
- Team:
Khan Academy
- Duration:
- 03:11
![]() |
Fran Ontanaya edited Arabic subtitles for Solving radical equations | Exponent expressions and equations | Algebra I | Khan Academy | |
![]() |
Fran Ontanaya edited Arabic subtitles for Solving radical equations | Exponent expressions and equations | Algebra I | Khan Academy |