YouTube

Got a YouTube account?

New: enable viewer-created translations and captions on your YouTube channel!

Chinese, Simplified subtitles

← “黑客攻击”细菌以对抗癌症 - 塔尔 · 丹尼诺

观看完整课程: https://ed.ted.com/lessons/hacking-bacteria-to-fight-cancer-tal-danino

1884 年,有一位不幸的病患,其颈部的肿瘤在快速地生长,且他同时还患有与肿瘤无关的的细菌皮肤感染。随着皮肤感染的痊愈,他颈部的肿瘤竟神奇消退了。原因是此次感染刺激了该病患的免疫系统。今天,合成生物学家通过基因编程细菌活细胞,使其可将药物安全送至肿瘤。这是怎么发生的呢?塔尔·丹尼诺为您揭晓。

课程讲解:塔尔 · 丹尼诺(Tal Danino),动画制作:克里斯托弗 · 毕晓普(Chris Bishop)。

Get Embed Code
23 Languages

Showing Revision 17 created 12/30/2019 by Lipeng Chen.

  1. 1884 年,一位癌症患者的病情每况愈下。
  2. 他颈部的恶性肿瘤快速增大,
  3. 随之而来的,是非肿瘤所致的
    细菌性皮肤感染。
  4. 但很快,令人意外的情况出现了:
  5. 随着此人皮肤感染的痊愈,
    他的恶性肿瘤亦开始消退。
  6. 一位名叫威廉 · 科利的医生(William Coley)
    在 7 年后找到这名患者,
  7. 他没有发现任何
    癌症(恶性肿瘤)遗存的迹象。
  8. 科利于是相信
    有一件举世瞩目的事情要发生:
  9. 细菌感染能够刺激患者的免疫系统
  10. 以对抗癌症。
  11. 这项发现使科利成为癌症疗法的先驱,

  12. 即,有意向患者体内注射细菌,
    以成功治疗癌症。
  13. 一个世纪之后,
    合成生物学家发现了更好的治疗手段。
  14. 他们利用了看似不可能的盟友——
  15. 通过人为编程细菌的帮助,
    使药物安全并直接地送至肿瘤处。
  16. 当细胞正常功能被改变时,
    癌症就会发生。

  17. 癌变细胞之后开始
    快速繁殖、成长,最终形成肿瘤。
  18. 诸如放疗、化疗以及免疫疗法
  19. 会击杀癌细胞,
    但对整个身体也有副作用,
  20. 而且会在治疗过程中
    无差别地破坏健康的组织。
  21. 然而,一些细菌,例如大肠杆菌

  22. 具有特定的优势,
    它们可以选择性地在肿瘤内生长。
  23. 实际上,肿瘤的内部核心
    为细菌提供了理想的生长环境,
  24. 供细菌安全地繁殖,
    躲避免疫细胞的攻击。
  25. 这样的细菌不但不会引发炎症
  26. 还可被重编程,
    使其自身携带抗癌药物
  27. 犹如特洛伊木马,
    从肿瘤内部展开攻击。
  28. 此类通过基因编程细菌活细胞
    作为治疗手段的新颖方式
  29. 是目前合成生物学中
    一个备受关注的领域。
  30. 那细菌是如何被编程的呢?

  31. 关键就在于对它们 DNA 的操控。
  32. 在细菌活细胞的 DNA 中
    插入特别的基因序列,
  33. 并指导其合成不同的分子。
  34. 其中包括一些
    会干扰癌细胞的生长的分子。
  35. 在生物电路的帮助下,
  36. 细菌还可以被编程,
    从而做出特定行为。
  37. 这些行为基于特定因素的
    出现、缺失或组合而异。
  38. 举个例子,肿瘤通常
    含氧量低, PH 值低,
  39. 并且会过量生产特定分子。
  40. 合成生物学家们
    可以让细菌对这些条件敏感,
  41. 因此使得细菌只对肿瘤反应,
    从而避开健康组织。
  42. 有一种生物电路,
    名为同步裂解回路(SLC)。

  43. 它不仅能使细菌携带药物,
    还可使其按时间规律行动。
  44. 首先,为避免伤害健康组织,
  45. 抗癌药物会随着细菌的生长被释放,
  46. 而整个过程仅会发生在肿瘤内部。
  47. 接下来,在药物被释放完毕后,
  48. 当细菌数量上升至临界值时,
  49. 一个生死 开关会被启动,
    致使细菌爆裂。
  50. 这样既释放了药物,
    又削减了细菌数量。
  51. 当然,一定比例的细菌会存活下来
  52. 以待继续繁殖、占领肿瘤。
  53. 最终,细菌的数量将再次
    增长至临界值,触发生死开关,
  54. 如此循环。
  55. 人们可将生物电路中
    药物释放的周期进行微调,
  56. 以最佳方式对抗不同癌症。
  57. 这一治疗方法已在科学实验中的
    小白鼠身上被证实具有前景。

  58. 科学家通过注射细菌,
    不仅可以消灭淋巴瘤,
  59. 同时还会刺激免疫系统,
  60. 引发免疫细胞识别并攻击
  61. 实验鼠体内
    其他未受药物影响的淋巴瘤。
  62. 不同于其他疗法,
    细菌并非只针对一种癌细胞,

  63. 而是以实体瘤的
    一些共有特征作为靶点。
  64. 被基因编辑过的细菌
    不局限于简单的对抗癌症,
  65. 同时,还能作为复杂精密的感应器
  66. 以监视未来疾病的发生部位。
  67. 安全的益生菌甚至
    能以休眠状态潜伏于内脏,
  68. 在任何体内失调可能导致
    疾病症状发生之前,
  69. 进行探测、阻止及治疗。
  70. 科技的发展,例如未来将会出现的

  71. 能带来更多个性化药物的纳米机器人,
    令人兴奋无比。
  72. 不过多亏了数亿年来的进化,
  73. 我们可能已经站在了
  74. 研究细菌全新生物形态的起点。
  75. 向其中融入合成生物学,
  76. 谁人可知未来的可能呢?