YouTube

Got a YouTube account?

New: enable viewer-created translations and captions on your YouTube channel!

Dutch subtitles

← Introductie van de Contante Waarde

De keuze tussen geld nu of geld later.

Get Embed Code
23 Languages

Subtitles translated from английски език Showing Revision 1 created 07/13/2012 by Martijn van der Molen.

  1. We zullen nu waarschijnlijk een van de meest nuttige
    financiële concepten leren

  2. en dat is de contante waarde.
  3. En als je weet wat de contante waarde is
  4. dan is het heel eenvoudig om te begrijpen wat
  5. de netto contante waarde en de contant gemaakte kasstroom
  6. en de interne rentevoet
  7. en uiteindelijk zullen we al deze dingen leren.
  8. Maar eerst de contante waarde, wat betekent dat?
  9. Contante waarde.
  10. We gaan een korte opgave doen.
  11. Ik zou je vandaag honderd dollar kunnen betalen.
  12. Dus we zeggen vandaag
  13. betaal ik je honderd dollar.
  14. Of -- en dat ligt aan jou -- over een jaar, betaal ik je
  15. laten we zeggen over een jaar ga ik je $110 betalen.
  16. En mijn vraag aan jou is,
  17. en dit is de kern van financiële rekenkunde
  18. waarop alles gebaseerd wordt,
  19. welke jouw voorkeur heeft?
  20. En dit is gegarandeerd.
  21. Ik garandeer je, óf ik betaal je vandaag $100 en
  22. er is geen risico, zelfs niet als ik overreden wordt of zo.
  23. Als de aarde bestaat dan betaal ik je over een jaar $110.
  24. Het is gegarandeerd dus er is geen risico.
  25. Dus is het alleen een kwestie van
  26. $100 vandaag krijgen, in je hand,
  27. of met zekerheid over een jaar $110.
  28. Dus hoe gaan we deze twee vergelijken?
  29. En dat is waar de contante waarde van pas komt.
  30. Als er een manier zou zijn om
  31. te kunnen zeggen: wat is de $110 die
  32. we gegarandeerd krijgen in de toekomst,
  33. Wat als we kunnen zeggen wat
  34. dat vandaag waard is?
  35. Hoeveel is het waard op dit moment?
  36. Laten we er even over nadenken.
  37. Stel dat je al je geld
  38. bijvoorbeeld op de bank kunt zetten.
  39. En tegenwoordig neem je dan een beetje risico.
  40. Maar stel dat je het bij de veiligste bank van de wereld
    neer kunt zetten.
  41. Laten we de schatkamer van de overheid nemen
  42. welke als risicovrij worden beschouwd
  43. aangezien de overheid, de schatkamer
  44. altijd indirect meer geld kan bijdrukken.
  45. Op een dag gaan we bezig met aanbod van geld.
  46. Maar uiteindelijk heeft
  47. overheid de rechten over de drukpersen et cetera.
  48. Het is iets ingewikkelder dan dat maar voor dit doel
    gaan we er vanuit dat
  49. de schatkamer van de overheid, wat eigenlijk
  50. betekent dat jij geld leent aan de overheid,
  51. risicovrij is.
  52. Dus stel dat
  53. jij mij geld kan lenen
  54. Stel, ik kan je $100 geven
  55. die jij kan investeren
  56. tegen 5% risicovrij.
  57. Dus jij investeert het tegen 5% risicovrij.
  58. En hoeveel is dat dan waard over een jaar?
  59. Over een jaar.
  60. Dat zou dan $105 worden over een jaar.
  61. Laat ik $110 hier even opschrijven.
  62. Dus dit is een goede manier om er over na te denken.
  63. Jij denkt nu, ok, in plaats van het geld
  64. over een jaar van Sal te krijgen
  65. en dus $110 dollar te krijgen,
  66. Als ik vandaag $100 neem en het ergens risicovrij neerzet
  67. zou ik na een jaar $105 hebben.
  68. Dus er vanuit gaande dat ik het geld vandaag niet uitgeef,
  69. is dit de betere situatie, toch?
  70. Als ik het geld vandaag neem en risicovrij
  71. investeer tegen 5%, dan houd ik
  72. $105 over na een jaar.
  73. Echter, als jij me vertelt
  74. Sal, geef me het geld na een jaar en geef me dan $110
  75. dan houd je meer geld over na een jaar.
  76. Je houdt $110 over.
  77. En dit is de juiste manier om er over na te denken.
  78. En onthoud, alles is risicovrij.
  79. Wanneer we beginnen over risico,
  80. en we beginnen over verschillende interest percentages en
  81. waarschijnlijkheden, maar daar komen we uiteindelijk wel op.
  82. Maar ik wil je eerst een makkelijk voorbeeld geven.
  83. Dus je hebt al besloten wat je gaat doen.
  84. Maar we weten de contante waarde nog niet.
  85. Dus in feite,
  86. wanneer je deze $100 neemt en je zegt
  87. als ik dit uitleen aan de overheid
  88. of een risicovrije bank tegen 5%,
  89. het over een jaar $105 oplevert.
  90. Deze $105 is een manier om het uit te drukken wat de
    waarde is van $100 vandaag over een jaar.
  91. Dus wat als we nou de andere kant op rekenen?
  92. Als we een bepaalde hoeveelheid geld hebben
  93. en we willen weten wat de waarde is op dit moment
  94. wat moeten we dan doen?
  95. Om van hier tot hier te komen, wat deden we?
  96. We namen $100
  97. en vermenigvuldigden het met 1+5%.
  98. Dus dat is 1,05
  99. Dus om de andere kant op te gaan,
  100. om te zeggen hoeveel geld
  101. ik zou hebben als het zou groeien met 5%
  102. en er $110 over blijft, dan moeten we dit delen door 1,05.
  103. En dan krijgen we de contante waarde
  104. en dit wordt geschreven als PV (nederlands CW)
  105. We krijgen nu de contante waarde van $110 een jaar na nu.
  106. Dus $110 over een jaar.
  107. Dus de contante waarde van $110 in 2009
  108. Het is nu 2008
  109. Ik weet niet in welk jaar je deze video bekijkt
  110. Hopelijk kijken mensen er in het volgende millennium er naar.
  111. Maar de contante waarde van $110 in 2009
  112. -- er vanuit gaande dat het nu 2008 is -- een jaar na nu, is
    gelijk aan $110
  113. gedeeld door 1,05.
  114. Wat is gelijk aan -- laat ik de rekenmachine er bij pakken
  115. terwijl dit niet noodzakelijk is -- even alles wissen.
  116. Ok, dus ik wil 110 delen door 1,05
  117. en dit is gelijk aan 104,76 afgerond.
  118. Dus het is gelijk aan $104,76.
  119. Dus de contante waarde van $110 een jaar na nu
  120. er vanuit gaande dat we het geld risicovrij kunnen investeren
    tegen 5% -- als we dat vandaag zouden krijgen --
  121. de contante waarde van dit is -- laat ik dit even in een andere
    kleur opschrijven, om de eentonigheid te voorkomen --
  122. de contante waarde is gelijk aan $104,76.
  123. Een andere manier om dit te verwoorden is om de
  124. contante waarde van $110 een jaar na nu, we deze waarde
    contant maken tegen de disconteringsvoet.
  125. En de disconteringsvoet is het deze.
  126. Hier groeiden we het geld met -- zou je kunnen zeggen --
  127. onze opbrengst, een 5% opbrengst, of onze interest.
  128. Hier maakten we het geld contant omdat we
    teruggaan in tijd --
  129. We gaan van na een jaar naar het heden.
  130. En dit is onze opbrengst. Om het bedrag dat we investeren
    te berekenen
  131. moeten we het bedrag vermenigvuldigen met
    1 plus de opbrengst.
  132. Om vervolgens de contante waarde te berekenen van
    een bedrag in de toekomst naar het verleden
  133. moeten we dit delen door 1 plus de disconteringsvoet -- dus dit
  134. is een disconteringsvoet van 5%
  135. om tot de contante waarde te komen.
  136. Dus wat betekent dit nou?
  137. Dit betekent dat als iemand ons $110 wil betalen -- van de
    5% uitgaande, denk erom dat dit
  138. een belangrijk uitgangspunt is -- dit betekent dat als ik zeg dat
  139. ik je $110 wil betalen een jaar na nu,
  140. en jij kunt 5% krijgen, dus je kunt eigenlijk zeggen
  141. dat 5% je disconteringsvoet is, risicovrij.
  142. Dan zou je er voor kiezen om vandaag geld te krijgen
  143. als ik meer geld zou geven dan de contante waarde.
  144. Dus als we vergelijken -- laat ik dit even leeg maken,
  145. even naar beneden scrollen -- dus stel dat
  146. een jaar -- dus vandaag, een jaar --
  147. we hadden berekend dat $110 een jaar na nu, de
  148. contante waarde hiervan -- dus de contante waarde van $110 --
  149. is gelijk aan $104,76.
  150. Dus -- en dit is aangezien ik uitging van
    een 5% disconteringsvoet --
  151. dit zegt ons -- dit is een dollarteken, het is wat lastig te lezen --
  152. dit zegt ons dat als jij moest kiezen tussen
  153. $110 een jaar na nu en $100 vandaag,
  154. je zou kiezen voor de $110 een jaar na nu.
  155. En waarom is dat?
  156. Omdat de contante waarde meer waard is dan $100.
  157. Maar, als ik je kon laten kiezen tussen $110 een jaar na nu of
  158. $105 vandaag, deze -- de $105 vandaag -- de betere
    keuze zou zijn,
  159. aangezien de contante waarde -- $105 vandaag
  160. die je niet contant hoeft te maken aangezien het al vandaag is --
  161. de contante waarde hetzelfde is.
  162. $105 vandaag is dus meer waard dan de contante
    waarde van $110,
  163. wat $104,76 is.
  164. Een andere manier om dit te verwoorden is dat ik deze
    $105 naar de bank kan brengen,
  165. daar 5% over kan ontvangen en dan zou ik -- waar zal
  166. ik op uitkomen? -- ik zou uitkomen op $105 maal 1,05 en
    dat is gelijk aan $110,25.
  167. Dus een jaar na nu zou ik 25 cent meer hebben.
  168. En ik zou het plezier hebben om het hele jaar het geld te houden
  169. maar dat is lastig om te becijferen dus dat laten we
    buiten beschouwing.