Problem connecting to Twitter. Please try again.
Problem connecting to Twitter. Please try again.
Problem connecting to Twitter. Please try again.
Problem connecting to Twitter. Please try again.
Problem connecting to Twitter. Please try again.

Return to Video

Natural pest control ... using bugs! | Shimon Steinberg | TEDxTelAviv

  • 0:00 - 0:02
    I'm a bug lover, myself --
  • 0:03 - 0:04
    not from childhood, by the way,
  • 0:04 - 0:06
    but rather late.
  • 0:07 - 0:08
    When I bachelored,
  • 0:08 - 0:11
    majoring in zoology
    at Tel Aviv University,
  • 0:11 - 0:13
    I kind of fell in love with bugs.
  • 0:13 - 0:15
    And then, within zoology,
  • 0:15 - 0:18
    I took the course
    or the discipline of entomology,
  • 0:18 - 0:20
    the science of insects.
  • 0:21 - 0:24
    And then I thought to myself,
    how can I be practical
  • 0:24 - 0:27
    or help in the science of entomology?
  • 0:27 - 0:31
    And then I moved to the world
    of plant protection --
  • 0:31 - 0:33
    plant protection from insects,
  • 0:33 - 0:35
    from bad bugs.
  • 0:35 - 0:37
    And then within plant protection,
  • 0:37 - 0:42
    I came into the discipline
    of biological pest control,
  • 0:42 - 0:43
    which we actually define
  • 0:43 - 0:46
    as the use of living organisms
  • 0:46 - 0:51
    to reduce populations
    of noxious plant pests.
  • 0:51 - 0:54
    So it's a whole discipline
    in plant protection
  • 0:54 - 0:57
    aimed at the reduction of chemicals.
  • 0:58 - 1:00
    And biological pest control, by the way,
  • 1:00 - 1:03
    or these "good bugs"
    that we are talking about,
  • 1:03 - 1:07
    they've existed in the world
    for thousands and thousands of years,
  • 1:07 - 1:09
    for a long, long time.
  • 1:09 - 1:12
    But only in the last 120 years,
  • 1:12 - 1:16
    people started, or people
    knew more and more
  • 1:16 - 1:20
    how to exploit, or how to use,
    this biological control phenomenon,
  • 1:20 - 1:23
    or in fact, natural control phenomenon,
  • 1:23 - 1:26
    for their own needs.
  • 1:26 - 1:30
    Because biological control phenomenon --
    you can see it in your backyard.
  • 1:30 - 1:33
    Just take a magnifying glass.
    You see what I have here?
  • 1:33 - 1:37
    That's a magnifier, times 10.
  • 1:37 - 1:40
    You just open it, twist leaves,
  • 1:40 - 1:43
    and you see a whole new world
    of minute insects,
  • 1:43 - 1:48
    or little spiders of one millimeter,
    one-and-a-half, two millimeters long,
  • 1:48 - 1:51
    and you can distinguish
    between the good ones and the bad ones.
  • 1:51 - 1:56
    So this phenomenon of natural control
    exists literally everywhere.
  • 1:56 - 1:58
    Here, in front of this building, I'm sure.
  • 1:58 - 1:59
    Just have a look at the plants.
  • 2:00 - 2:04
    So it's everywhere,
    and we need to know how to exploit it.
  • 2:04 - 2:06
    Well, let's go hand by hand
  • 2:06 - 2:09
    and browse through just a few examples.
  • 2:09 - 2:11
    What is a pest?
  • 2:11 - 2:14
    What damage does it actually
    inflict on the plant?
  • 2:14 - 2:16
    And what is the natural enemy,
  • 2:16 - 2:19
    the biological control agent,
    or the "good bug"
  • 2:19 - 2:21
    that we're talking about?
  • 2:21 - 2:26
    In general, I'm going to talk
    about insects and spiders,
  • 2:26 - 2:28
    or mites, let us call them.
  • 2:28 - 2:31
    Insects, those six-legged organisms
  • 2:31 - 2:35
    and spiders or mites,
    the eight-legged organisms.
  • 2:35 - 2:36
    Let's have a look at that.
  • 2:36 - 2:40
    Here is a devastating pest, a spider mite,
  • 2:40 - 2:42
    because it does a lot
    of webbing, like a spider.
  • 2:43 - 2:44
    You see the mother in between,
  • 2:44 - 2:47
    and two daughters, probably,
    on the left and right,
  • 2:47 - 2:49
    and a single egg on the right-hand side.
  • 2:49 - 2:51
    And then you see
    what kind of damage it can inflict.
  • 2:51 - 2:54
    On your right-hand side,
    you can see a cucumber leaf,
  • 2:54 - 2:55
    in the middle, a cotton leaf,
  • 2:55 - 2:59
    and on the left, a tomato leaf
    with these little stipplings.
  • 2:59 - 3:02
    They can literally turn
    from green to white,
  • 3:02 - 3:07
    because of the sucking, piercing
    mouth parts of those spiders.
  • 3:08 - 3:11
    But here comes nature,
    that provides us with a good spider.
  • 3:11 - 3:15
    This is a predatory mite --
    just as small as a spider mite;
  • 3:15 - 3:18
    one, two millimeters long,
    not more than that --
  • 3:18 - 3:22
    running quickly, hunting,
    chasing the spider mites.
  • 3:22 - 3:26
    And here, you can see this lady
    in action on your left-hand side --
  • 3:26 - 3:32
    just pierces, sucks the body fluids
    on the left-hand side of the pest mite.
  • 3:32 - 3:34
    And after five minutes,
    this is what you see:
  • 3:34 - 3:37
    just a typical dead corpse --
  • 3:37 - 3:40
    the shriveled, sucked-out,
    dead corpse of the spider mite,
  • 3:40 - 3:45
    and next to it, two satiated
    individuals, predatory mites,
  • 3:45 - 3:49
    a mother on the left-hand side,
    a young nymph on the right-hand side.
  • 3:49 - 3:52
    By the way, a meal for them for 24 hours,
  • 3:52 - 3:56
    is about five of the spider mites,
    of the bad mites,
  • 3:56 - 4:01
    and-or 15 to 20 eggs of the pest mites.
  • 4:01 - 4:03
    By the way, they are always hungry.
  • 4:03 - 4:06
    (Laughter)
  • 4:06 - 4:08
    And here is another example: aphids.
  • 4:08 - 4:10
    It's springtime now in Israel.
  • 4:10 - 4:12
    When temperatures rise sharply,
  • 4:12 - 4:16
    you can see those bad ones,
    those aphids, all over the plants --
  • 4:16 - 4:18
    in your hibiscus, in your lantana,
  • 4:18 - 4:22
    in the young, fresh foliage
    of the so-called spring flush.
  • 4:22 - 4:26
    By the way, with aphids you have
    only females, like Amazons.
  • 4:26 - 4:30
    Females giving rise to females,
    giving rise to other females.
  • 4:30 - 4:31
    No males at all.
  • 4:31 - 4:33
    Parthenogenesis, as it's so called.
  • 4:33 - 4:36
    And they're very happy
    with that, apparently.
  • 4:36 - 4:37
    (Laughter)
  • 4:37 - 4:38
    Here we can see the damage.
  • 4:38 - 4:45
    Those aphids secrete a sticky,
    sugary liquid called honeydew,
  • 4:45 - 4:49
    and this just clogs
    the upper parts of the plant.
  • 4:49 - 4:53
    Here you see a typical cucumber leaf
    that turned from green to black
  • 4:53 - 4:58
    because of a black fungus, sooty mold,
    which is covering it.
  • 4:58 - 5:03
    And here comes the salvation,
    through this parasitic wasp.
  • 5:03 - 5:05
    Here we are not talking about a predator.
  • 5:05 - 5:08
    Here we are talking a parasite --
  • 5:08 - 5:09
    not a two-legged parasite,
  • 5:09 - 5:12
    but an eight-legged parasite, of course.
  • 5:13 - 5:14
    This is a parasitic wasp,
  • 5:14 - 5:20
    again, two millimeters long, slender,
    a very quick and sharp flier.
  • 5:20 - 5:23
    And here you can see
    this parasite in action,
  • 5:23 - 5:26
    like in an acrobatic maneuver.
  • 5:26 - 5:27
    She stands vis-à-vis
  • 5:27 - 5:30
    in front of the victim
    at the right-hand side,
  • 5:30 - 5:35
    bending its abdomen
    and inserting a single egg
  • 5:35 - 5:37
    into the body fluids of the aphid.
  • 5:38 - 5:40
    By the way, the aphid tries to escape.
  • 5:40 - 5:44
    She kicks and bites
    and secretes different liquids,
  • 5:44 - 5:46
    but nothing will happen, in fact --
  • 5:46 - 5:50
    only the egg of the parasitoid
    will be inserted
  • 5:50 - 5:52
    into the body fluids of the aphid.
  • 5:52 - 5:55
    And after a few days,
    depending upon temperature,
  • 5:55 - 5:56
    the egg will hatch
  • 5:56 - 6:01
    and the larva of this parasite
    will eat the aphid from the inside.
  • 6:01 - 6:02
    (Laughter)
  • 6:02 - 6:04
    This is all natural. This is all natural.
  • 6:05 - 6:07
    This is not fiction, nothing at all.
  • 6:07 - 6:09
    Again -- in your backyard.
    In your backyard.
  • 6:10 - 6:11
    (Laughter)
  • 6:11 - 6:13
    (Applause)
  • 6:13 - 6:19
    But this is the end result: mummies.
  • 6:19 - 6:24
    This is the visual result
    of a dead aphid encompassing inside,
  • 6:24 - 6:30
    a developing parasitoid that,
    after a few minutes, you see halfway out.
  • 6:30 - 6:32
    The birth is almost complete.
  • 6:32 - 6:36
    You can see, by the way,
    in different movies, etc.,
  • 6:36 - 6:37
    it takes just a few minutes.
  • 6:37 - 6:41
    And if this is a female,
    she'll immediately mate with a male
  • 6:41 - 6:44
    and off she goes,
    because time is very short.
  • 6:44 - 6:46
    This female can live
    only three to four days,
  • 6:46 - 6:50
    and she needs to give rise
    to around 400 eggs.
  • 6:50 - 6:54
    That means she has 400 bad aphids
  • 6:54 - 6:57
    to put her eggs into their body fluids.
  • 6:57 - 6:59
    This is, of course, not the end of it.
  • 6:59 - 7:02
    There is a whole wealth
    of other natural enemies
  • 7:02 - 7:03
    and this is just the last example.
  • 7:03 - 7:06
    Again, we'll start first with the pest:
  • 7:06 - 7:07
    the thrips.
  • 7:07 - 7:10
    By the way, all these weird names --
  • 7:10 - 7:13
    I didn't bother you with the Latin
    names of these creatures,
  • 7:13 - 7:14
    just the popular names.
  • 7:14 - 7:19
    But this is a nice,
    slender, very bad pest.
  • 7:19 - 7:21
    If you can see this: sweet peppers.
  • 7:21 - 7:24
    This is not just an exotic,
    ornamental sweet pepper.
  • 7:24 - 7:26
    This is a sweet pepper
    which is not consumable
  • 7:27 - 7:29
    because it is suffering
    from a viral disease
  • 7:29 - 7:32
    transmitted by those thrip adults.
  • 7:33 - 7:36
    And here comes the natural enemy,
    minute pirate bug --
  • 7:36 - 7:39
    "minute," because it is rather small.
  • 7:39 - 7:42
    Here you can see the adult,
    black, and two young ones.
  • 7:42 - 7:44
    And again, in action.
  • 7:44 - 7:47
    This adult pierces the thrips,
  • 7:48 - 7:50
    sucking it within just several minutes,
  • 7:50 - 7:53
    going to the other prey,
    continuing all over the place.
  • 7:53 - 7:57
    And if we spread those minute
    pirate bugs, the good ones,
  • 7:57 - 8:00
    for example, in a sweet pepper plot,
  • 8:00 - 8:02
    they go to the flowers.
  • 8:02 - 8:07
    And look -- this flower is flooded
    with predatory bugs, with the good ones,
  • 8:07 - 8:10
    after wiping out the bad ones, the thrips.
  • 8:10 - 8:13
    So this is a very positive situation.
  • 8:13 - 8:16
    No harm to the developing fruit.
    No harm to the fruit set.
  • 8:16 - 8:19
    Everything is just fine
    under these circumstances.
  • 8:20 - 8:22
    But again, the question is,
  • 8:22 - 8:26
    here you saw them on a one-to-one basis --
    the pest, the natural enemy.
  • 8:26 - 8:29
    What we do is actually this.
  • 8:30 - 8:33
    In Northeast Israel,
    in Kibbutz Sde Eliyahu,
  • 8:33 - 8:37
    there is a facility that mass-produces
    those natural enemies.
  • 8:38 - 8:44
    In other words, what we do there
    is amplify the natural control,
  • 8:44 - 8:46
    or the biological control phenomenon.
  • 8:46 - 8:51
    And in 30,000 square meters
    of state-of-the-art greenhouses,
  • 8:51 - 8:54
    there, we are mass-producing
    those predatory mites,
  • 8:54 - 8:56
    those minute pirate bugs,
  • 8:56 - 8:59
    those parasitic wasps, etc.
  • 8:59 - 9:00
    Many different parts.
  • 9:00 - 9:03
    By the way, they have
    a very nice landscape --
  • 9:03 - 9:05
    you see the Jordanian Mountains
    on the one hand,
  • 9:05 - 9:07
    and the Jordan Valley on the other hand,
  • 9:07 - 9:11
    and a good, mild winter
    and a nice, hot summer,
  • 9:11 - 9:15
    which is an excellent condition
    to mass-produce those creatures.
  • 9:15 - 9:19
    And by the way, mass-production --
    it is not genetic manipulation.
  • 9:19 - 9:24
    There are no GMOs -- genetically
    modified organisms -- whatsoever.
  • 9:24 - 9:25
    We take them from nature,
  • 9:25 - 9:30
    and the only thing that we do
    is give them the optimal conditions,
  • 9:30 - 9:32
    under the greenhouses
    or in the climate rooms,
  • 9:32 - 9:36
    in order to proliferate,
    multiply and reproduce.
  • 9:36 - 9:38
    And that's what we get.
  • 9:38 - 9:40
    You see under a microscope.
  • 9:40 - 9:43
    You see in the upper left corner?
    You see a single predatory mite.
  • 9:43 - 9:47
    And this is the whole bunch
    of predatory mites.
  • 9:47 - 9:49
    You see this ampul. You see this one.
  • 9:49 - 9:52
    I have one gram of those predatory mites.
  • 9:52 - 9:56
    One gram is 80,000 individuals.
  • 9:57 - 10:02
    80,000 individuals are good enough
    to control one acre,
  • 10:02 - 10:04
    4,000 square meters,
  • 10:04 - 10:06
    of a strawberry plot
  • 10:06 - 10:09
    against spider mites for the whole season
  • 10:09 - 10:10
    of almost one year.
  • 10:11 - 10:15
    And we can produce
    from this, believe you me,
  • 10:15 - 10:19
    several dozens of kilograms
    on an annual basis.
  • 10:19 - 10:23
    So this is what I call
    amplification of the phenomenon.
  • 10:23 - 10:27
    And no, we do not disrupt the balance.
  • 10:27 - 10:28
    On the contrary,
  • 10:28 - 10:31
    because we bring it to every cultural plot
  • 10:31 - 10:34
    where the balance was already disrupted
  • 10:34 - 10:35
    by the chemicals.
  • 10:35 - 10:37
    Here we come with those natural enemies
  • 10:37 - 10:40
    in order to reverse
    a little bit of the wheel
  • 10:40 - 10:44
    and to bring more natural balance
    to the agricultural plot
  • 10:44 - 10:46
    by reducing those chemicals.
  • 10:46 - 10:48
    That's the whole idea.
  • 10:48 - 10:49
    And what is the impact?
  • 10:49 - 10:52
    In this table, you can
    actually see what is an impact
  • 10:52 - 10:56
    of a successful biological
    control by good bugs.
  • 10:57 - 11:03
    For example, in Israel, where we employ
    more than 1,000 hectares --
  • 11:03 - 11:06
    10,000 dunams in Israeli terms --
  • 11:06 - 11:08
    of biological pests
    controlling sweet pepper
  • 11:08 - 11:10
    under protection,
  • 11:10 - 11:14
    75 percent of the pesticides
    were actually reduced.
  • 11:14 - 11:16
    And Israeli strawberries, even more --
  • 11:16 - 11:18
    80 percent of the pesticides,
  • 11:18 - 11:22
    especially those aimed
    against pest mites in strawberries.
  • 11:23 - 11:25
    So the impact is very strong.
  • 11:26 - 11:28
    And there goes the question,
  • 11:28 - 11:31
    especially if you ask
    growers, agriculturists:
  • 11:31 - 11:33
    Why biological control?
  • 11:33 - 11:35
    Why good bugs?
  • 11:35 - 11:37
    By the way, the number of answers you get
  • 11:37 - 11:40
    equals the number of people you ask.
  • 11:41 - 11:46
    But if we go, for example,
    to this place, Southeast Israel,
  • 11:46 - 11:49
    the Arava area
    above the Great Rift Valley,
  • 11:49 - 11:54
    where the pearl of Israeli
    agriculture is located,
  • 11:54 - 11:58
    especially under greenhouse conditions,
    or under screenhouse conditions --
  • 11:58 - 12:01
    if you drive all the way
    to Eilat, you see this
  • 12:01 - 12:03
    just in the middle of the desert.
  • 12:03 - 12:04
    And if you zoom in,
  • 12:04 - 12:06
    you can definitely watch this:
  • 12:06 - 12:08
    grandparents with their grandchildren,
  • 12:08 - 12:11
    distributing the natural
    enemies, the good bugs,
  • 12:11 - 12:14
    instead of wearing special clothes
  • 12:14 - 12:16
    and gas masks and applying chemicals.
  • 12:16 - 12:19
    So safety, with respect
    to the application,
  • 12:19 - 12:23
    is the number one answer
    that we get from growers,
  • 12:23 - 12:25
    for "Why biological control?"
  • 12:26 - 12:30
    Number two, many growers
    are, in fact, petrified
  • 12:30 - 12:33
    by the idea of resistance,
  • 12:33 - 12:37
    that the pests will become
    resistant to the chemicals,
  • 12:37 - 12:41
    just like in our case, that bacteria
    becomes resistant to antibiotics.
  • 12:41 - 12:44
    It's the same, and it can
    happen very quickly.
  • 12:45 - 12:49
    Fortunately, in either biological control
    or even natural control,
  • 12:49 - 12:52
    resistance is extremely rare.
  • 12:53 - 12:54
    It hardly happens.
  • 12:55 - 12:58
    Because this is evolution,
    this is the natural ratio,
  • 12:58 - 13:02
    unlike resistance, which happens
    in the case of chemicals.
  • 13:02 - 13:05
    And thirdly, public demand.
  • 13:05 - 13:10
    The more the public demands
    the reduction of chemicals,
  • 13:10 - 13:14
    the more growers become aware of the fact
  • 13:14 - 13:17
    that they should, wherever they can
    and wherever possible,
  • 13:17 - 13:21
    replace the chemical control
    with biological control.
  • 13:21 - 13:23
    Even here, there is another grower,
  • 13:23 - 13:27
    you see, very interested in the bugs,
    the bad ones and the good ones,
  • 13:27 - 13:29
    wearing this magnifier
    already on her head,
  • 13:29 - 13:31
    just walking safely in her crop.
  • 13:32 - 13:35
    Finally, I want to get to my vision,
  • 13:35 - 13:37
    or, in fact, to my dream.
  • 13:38 - 13:40
    Because, you see, this is the reality.
  • 13:40 - 13:41
    Have a look at the gap.
  • 13:41 - 13:43
    If we take the overall turnover
  • 13:43 - 13:46
    of the biocontrol industry worldwide,
  • 13:46 - 13:48
    it's 250 million dollars.
  • 13:49 - 13:52
    And look at the overall pesticide industry
  • 13:52 - 13:54
    in all the crops throughout the world.
  • 13:54 - 13:57
    I think it's times 100
    or something like that.
  • 13:57 - 13:59
    Twenty-five billion.
  • 13:59 - 14:01
    So there is a huge gap to bridge.
  • 14:02 - 14:04
    So actually, how can we do it?
  • 14:04 - 14:09
    How can we bridge, or let's say,
    narrow, this gap over the years?
  • 14:09 - 14:13
    First of all, we need to find more robust,
  • 14:13 - 14:15
    good and reliable biological solutions,
  • 14:15 - 14:20
    more good bugs that we can
    either mass-produce
  • 14:20 - 14:22
    or actually conserve in the field.
  • 14:23 - 14:28
    Secondly, to create even more intensive
    and strict public demand
  • 14:28 - 14:31
    for the reduction of chemicals
    in agricultural fresh produce.
  • 14:32 - 14:35
    And thirdly, also to increase
    awareness by the growers
  • 14:35 - 14:38
    to the potential of this industry.
  • 14:38 - 14:41
    And this gap really narrows.
  • 14:41 - 14:43
    Step by step, it does narrow.
  • 14:45 - 14:47
    So I think my last slide is:
  • 14:47 - 14:49
    All we are saying --
    we can actually sing it --
  • 14:49 - 14:51
    Give nature a chance.
  • 14:51 - 14:54
    I'm saying it on behalf
    of all the biocontrol practitioners
  • 14:54 - 14:55
    and implementers,
  • 14:55 - 14:58
    in Israel and abroad,
  • 14:58 - 15:00
    really give nature a chance.
  • 15:00 - 15:01
    Thank you.
  • 15:01 - 15:03
    (Applause)
Title:
Natural pest control ... using bugs! | Shimon Steinberg | TEDxTelAviv
Description:

Shimon Steinberg looks at the difference between pests and bugs -- and makes the case for using good bugs to fight bad bugs, avoiding chemicals in our quest for perfect produce.

more » « less
Video Language:
English
Team:
closed TED
Project:
TEDxTalks
Duration:
17:01

English subtitles

Revisions Compare revisions