Tọa độ Descartes và Cartesian.
-
0:01 - 0:04Đây là một bức ảnh của Rene Descartes
-
0:04 - 0:06Một trong những bộ óc thiên tài
-
0:06 - 0:08cả trong toán học lẫn triết học
-
0:08 - 0:10Và tôi nghĩ bạn chuẩn bị thấy một chút xu hướng
-
0:10 - 0:13đó là Triết gia giỏi cũng là những nhà toán học giỏi
-
0:13 - 0:15và ngược lại
-
0:15 - 0:17ông ta cũng như là đồng nghiệp của Galileo
-
0:17 - 0:19Ông ta trẻ hơn 32 tuổi
-
0:19 - 0:22Nhưng cũng mất ít lâu sau cái chết của Galileo
-
0:22 - 0:23Người đàn ông này mất trẻ hơn
-
0:23 - 0:25Galileo mãi đến khoảng 70 tuổi
-
0:25 - 0:28Descartes mất lúc 54 tuổi
-
0:28 - 0:31Và ông ta nổi tiếng nhất
-
0:31 - 0:33với câu nói trên đây
-
0:33 - 0:34một câu nói rất triết lí
-
0:34 - 0:36"Tôi tư duy, vậy tôi tồn tại"
-
0:36 - 0:37nhưng tôi cũng muốn đưa vào,
-
0:37 - 0:39câu nói này không liên quan đến đại số
-
0:39 - 0:41nhưng tôi vẫn nghĩ đây là một câu nói khéo léo
-
0:41 - 0:43Chắc chắn là ít được biết đến nhất
-
0:43 - 0:44Chính câu này đây
-
0:44 - 0:47và tôi thích nó vì nó rất thiết thực
-
0:47 - 0:49nó sẽ làm bạn nhận ra đây là một người vĩ đại
-
0:49 - 0:51một tượng đài triết học và toán học
-
0:51 - 0:52vào cuối ngày,
-
0:52 - 0:54họ cũng chỉ là con người.
-
0:54 - 0:56và ông nói, "Cứ tiến lên.
-
0:56 - 0:58Cứ tiến lên
-
0:58 - 1:00Tôi đã mắc mọi sai lầm có thể phạm phải.
-
1:00 - 1:02Nhưng tôi vẫn tiến lên."
-
1:02 - 1:05Tôi nghĩ đây là một lời khuyên tốt về cuộc sống
-
1:05 - 1:08Bây giờ ông ta đã làm được nhiều thứ
-
1:08 - 1:09trong triết học và toán học
-
1:09 - 1:11nhưng nguyên nhân tôi kể ra là
-
1:11 - 1:13khi chúng ta học nền tảng của đại số
-
1:13 - 1:16thì đây là người
-
1:16 - 1:19chịu trách nhiệm lớn nhất cho mới quan hệ
-
1:19 - 1:21mạnh mẽ giữ đại số và hình học
-
1:21 - 1:23và nhìn xuống góc dưới này
-
1:23 - 1:25bạn có Đại số
-
1:25 - 1:26chúng ta cùng bàn bạc một chút
-
1:26 - 1:28chúng ta có phương trình với các kí hiệu
-
1:28 - 1:30và các kí hiệu là chủ yếu
-
1:30 - 1:32ta có thể gán giá trị vào
-
1:32 - 1:33nên bạn sẽ có những thứ như là
-
1:33 - 1:38y = 2x -1
-
1:38 - 1:39Nó cho ta thấy một mối quan hệ
-
1:39 - 1:41giữa giá trị của x
-
1:41 - 1:42và giá trị của y
-
1:42 - 1:44ta cũng có thể tạo một bảng ở đây
-
1:44 - 1:47và chọn một giá trị của x
-
1:47 - 1:48và xem y sẽ nhận giá trị nào
-
1:48 - 1:52Tôi có thể chọn một giá trị tùy ý của x
-
1:52 - 1:53và tìm ra được giá trị của y
-
1:53 - 1:55nhưng tôi sẽ chọn một giá trị rõ rằng.
-
1:55 - 1:58và bài toán trở nên không quá phức tạp.
-
1:58 - 1:59và ví dụ như,
-
1:59 - 2:01nếu x bằng -2
-
2:01 - 2:04thì y sẽ trở thành 2 * (-2) -1
-
2:04 - 2:072 nhân -2 rồi trừ cho 1
-
2:07 - 2:10là bằng -4 -1
-
2:10 - 2:12vậy là bằng -5
-
2:12 - 2:15nễu x bằng -1
-
2:15 - 2:20thì y sẽ trở thành 2 * (-1) -1
-
2:20 - 2:22và sẽ bằng với
-
2:22 - 2:25đây là -2 -1 là -3
-
2:25 - 2:29nếu x=0
-
2:29 - 2:33thì y sẽ bằng 2 * 0 -1
-
2:33 - 2:362 * 0 bằng 0 rồi -1 thì sẽ bằng -1
-
2:36 - 2:37làm thêm một vài ví dụ nữa.
-
2:37 - 2:38nếu x bằng 1
-
2:38 - 2:39và tôi có thể chọn bất cứ
giá trị nào. -
2:39 - 2:40Tôi vẫn có thể tính
được -
2:40 - 2:42nếu x bằng âm căn 2
-
2:42 - 2:45hay khi x bằng âm năm rưỡi
-
2:45 - 2:48hay là (dương) 67
-
2:48 - 2:49nhưng tôi chỉ chọn những
con số này. -
2:49 - 2:51bởi vì nó là cho bài toán dễ dàng hơn nhiều
-
2:51 - 2:53khi tôi cố tìm xem y sẽ ra như thế nào.
-
2:53 - 2:54nhưng khi x bằng 1
-
2:54 - 2:57y sẽ bằng 2 * 1 -1
-
2:57 - 3:002 * 1 bằng 2 trừ 1 bằng 1
-
3:00 - 3:03và tôi sẽ làm thêm một cái nữa
-
3:03 - 3:05bằng một màu mà tui chưa từng dùng.
-
3:05 - 3:07hãy dùng màu tím.
-
3:07 - 3:08nếu x bằng 2
-
3:08 - 3:09thì y sẽ trở thành
-
3:09 - 3:142 * 2 -1 (bây giờ x bằng 2)
-
3:14 - 3:17vậy thành 4 - 1, thì sẽ bằng với 3
-
3:17 - 3:18nên đủ rỏ rằng chưa
-
3:18 - 3:20tôi chỉ vừa ví dụ về mối quan hệ này.
-
3:20 - 3:23Nhưng tôi nói đúng là nó miêu tả mối
quan hệ chung -
3:23 - 3:25giữa biến y và biến x
-
3:25 - 3:27và tôi vừa làm cho nó rõ ràng
hơn một chút -
3:27 - 3:28tôi nói vậy là
-
3:28 - 3:30nếu x là một trong những biến này
-
3:30 - 3:31cho từng giá trị của x,
-
3:31 - 3:34Thì giá trị tương ứng của y là gì?
-
3:34 - 3:36và thứ mà Descartes nhận ra là
-
3:36 - 3:37là bạn có thể hình dung nó.
-
3:37 - 3:40và thứ bạn có thể hình dung là một điểm riêng biệt
-
3:40 - 3:43nhưng nó cũng giúp bạn nói chung
-
3:43 - 3:46có thể hình dung ra mối quan hệ này
-
3:46 - 3:47vậy điều chủ yếu ông ấy đã làm là
-
3:47 - 3:52xây dựng một thế giới với sự vô cùng trừu tượng
của những chữ cái đại diện -
3:52 - 3:55và đó cũng có sự liên quan đến hình học
-
3:55 - 3:58như là hình dạng, kích cỡ và góc.
-
3:58 - 4:03và từ đây ta có cả thế giới hình học.
-
4:03 - 4:05và rõ ràng đã có người trong lịch sử
-
4:05 - 4:07hoặc nhiều người mà đã bị lãng quên
-
4:07 - 4:09những người đã vô tình tìm ra điều này
-
4:09 - 4:12Nhưng trước hệ tọa độ Descartes
được nghĩ ra -
4:12 - 4:15Hình học được hiểu là
hình học Eulidean -
4:15 - 4:16và đó chủ yếu là dạng hình học
-
4:16 - 4:18mà bạn học trong lớp hình học.
-
4:18 - 4:20trong lớp 8, lớp 9, lớp 10.
-
4:20 - 4:23trong chương trình phổ thông truyền thống.
-
4:23 - 4:24và dó là hình học về nghiên cứu
-
4:24 - 4:29mối quan hệ giữa tam giác và các góc của chúng.
-
4:29 - 4:31vfa mố quan hệ giữa các đường tròn.
-
4:31 - 4:34và bạn có bán kính và sau đó có
tam giác -
4:34 - 4:36nội tiếp đường tròn và tất cả các thức còn lại
-
4:36 - 4:37Và ta sẽ đi sâu hơn
-
4:37 - 4:40trong các video về hình học
-
4:40 - 4:43Nhưng Descarts nói rằng, " Vâng, tôi nghĩ
tôi có thể đại diện sự hình dung này -
4:43 - 4:47như cách mà Euclid đã nghiên cứu tam giác và đường tròn
-
4:47 - 4:48
-
4:48 - 4:51
-
4:51 - 4:52
-
4:52 - 4:54
-
4:54 - 4:56
-
4:56 - 4:58
-
4:58 - 5:00
-
5:00 - 5:01
-
5:01 - 5:03
-
5:03 - 5:05
-
5:05 - 5:07
-
5:07 - 5:08
-
5:08 - 5:12
-
5:12 - 5:14
-
5:14 - 5:17
-
5:17 - 5:18
-
5:18 - 5:21
-
5:21 - 5:23
-
5:23 - 5:25
-
5:25 - 5:27
-
5:27 - 5:30
-
5:30 - 5:33
-
5:33 - 5:35
-
5:35 - 5:38
-
5:38 - 5:39
-
5:39 - 5:40
-
5:40 - 5:42
-
5:42 - 5:44
-
5:44 - 5:45
-
5:45 - 5:47
-
5:47 - 5:48
-
5:48 - 5:51
-
5:51 - 5:53
-
5:53 - 5:56
-
5:56 - 5:59
-
5:59 - 6:02
-
6:02 - 6:04
-
6:04 - 6:07
-
6:07 - 6:10
-
6:10 - 6:16
-
6:16 - 6:18
-
6:18 - 6:19
-
6:19 - 6:21
-
6:21 - 6:24
-
6:24 - 6:25
-
6:25 - 6:27
-
6:27 - 6:28
-
6:28 - 6:30
-
6:30 - 6:32
-
6:32 - 6:34
-
6:34 - 6:40
-
6:40 - 6:42
-
6:42 - 6:45
-
6:45 - 6:48
-
6:48 - 6:50
-
6:50 - 6:52
-
6:52 - 6:53
-
6:53 - 6:55
-
6:55 - 6:58
-
6:58 - 7:01
-
7:01 - 7:03
-
7:03 - 7:04
-
7:04 - 7:06
-
7:06 - 7:07
-
7:07 - 7:08
-
7:08 - 7:09
-
7:09 - 7:11
-
7:11 - 7:13
-
7:13 - 7:18
-
7:18 - 7:20
-
7:20 - 7:23
-
7:23 - 7:25
-
7:25 - 7:28
-
7:28 - 7:30
-
7:30 - 7:34
-
7:34 - 7:36
-
7:36 - 7:39
-
7:39 - 7:42
-
7:42 - 7:46
-
7:46 - 7:49
-
7:49 - 7:54
-
7:54 - 7:56
-
7:56 - 7:59
-
7:59 - 8:03
-
8:03 - 8:06
-
8:06 - 8:09
-
8:09 - 8:12
-
8:12 - 8:14
-
8:14 - 8:15
-
8:15 - 8:18
-
8:18 - 8:20
-
8:20 - 8:22
-
8:22 - 8:27
-
8:27 - 8:30
-
8:30 - 8:32
-
8:32 - 8:33
-
8:33 - 8:34
-
8:34 - 8:37
-
8:37 - 8:38
-
8:38 - 8:42
-
8:42 - 8:46
-
8:46 - 8:48
-
8:48 - 8:50
-
8:50 - 8:53
-
8:53 - 8:56
-
8:56 - 8:57
-
8:57 - 8:59
-
8:59 - 9:04
-
9:04 - 9:10
-
9:10 - 9:12
-
9:12 - 9:15
-
9:15 - 9:21
-
9:21 - 9:22
-
9:22 - 9:25
-
9:25 - 9:26
-
9:26 - 9:28
-
9:28 - 9:30
-
9:30 - 9:31
-
9:31 - 9:34
-
9:34 - 9:36
-
9:36 - 9:38
-
9:38 - 9:44
-
9:44 - 9:48
-
9:48 - 9:51
-
9:51 - 9:52
-
9:52 - 9:54
-
9:54 - 9:57
-
9:57 - 9:59
-
9:59 - 10:02
-
10:02 - 10:03
-
10:03 - 10:07
-
10:07 - 10:09
-
10:09 - 10:14
-
10:14 - 10:16
-
10:16 - 10:17
-
10:17 - 10:22
-
10:22 - 10:27
-
10:27 - 10:31
-
10:31 - 10:36
-
10:36 - 10:38
-
10:38 - 10:43
-
10:43 - 10:45
-
10:45 - 10:49
-
10:49 - 10:50
-
10:50 - 10:53
-
10:53 - 10:56
-
10:56 - 10:58
-
10:58 - 11:00
-
11:00 - 11:01
-
11:01 - 11:02
-
11:02 - 11:04
-
11:04 - 11:07
-
11:07 - 11:09
-
11:09 - 11:11
-
11:11 - 11:14
-
11:14 - 11:16
-
11:16 - 11:18
-
11:18 - 11:22
![]() |
Vy Thông Nguyễn edited Vietnamese subtitles for Descartes and Cartesian Coordinates | |
![]() |
Thông Nguyễn edited Vietnamese subtitles for Descartes and Cartesian Coordinates |