1 00:00:01,105 --> 00:00:02,145 我们来多做点题吧 2 00:00:02,145 --> 00:00:04,556 关于理想气体状态方程的题目 3 00:00:04,556 --> 00:00:06,680 假设我有一罐气体 4 00:00:06,680 --> 00:00:15,323 当前压强是3个大气压 5 00:00:15,323 --> 00:00:19,756 假设罐子的体积是 6 00:00:19,756 --> 00:00:27,413 比如 9升 7 00:00:27,413 --> 00:00:30,136 现在 气压会如何改变 8 00:00:30,136 --> 00:00:39,280 如果体积从9升变为3升 9 00:00:39,280 --> 00:00:42,183 从第一个理想气体状态方程的视频中 10 00:00:42,183 --> 00:00:43,348 你可以大概感觉到 11 00:00:43,348 --> 00:00:46,935 如果你有一堆——保持—— 12 00:00:46,935 --> 00:00:47,901 这很重要 13 00:00:47,901 --> 00:00:50,763 我们保持温度不变 14 00:00:50,763 --> 00:00:52,541 这很重要 必须明白 15 00:00:52,541 --> 00:00:58,384 所以在我们的直觉 16 00:00:58,384 --> 00:01:00,354 在理想气体状态方程背后 我们说 17 00:01:00,354 --> 00:01:02,990 看 如果我们有一定量的粒子 18 00:01:02,990 --> 00:01:06,850 以及一定的动能 19 00:01:06,850 --> 00:01:08,826 他们施加一定的压力 20 00:01:08,826 --> 00:01:09,778 在容器壁上 21 00:01:09,778 --> 00:01:14,370 如果我们要让容器变小 22 00:01:14,370 --> 00:01:16,198 我们有同样数量的粒子 23 00:01:16,198 --> 00:01:17,434 n不变 24 00:01:17,434 --> 00:01:19,882 平均动能不变 25 00:01:19,882 --> 00:01:21,656 所以它们会更频繁地撞上容器壁 26 00:01:21,656 --> 00:01:24,216 所以当我们使容器缩小时 27 00:01:24,216 --> 00:01:26,734 当体积变大 28 00:01:26,734 --> 00:01:27,757 当体积变小时 29 00:01:27,757 --> 00:01:30,068 气压应该升高 30 00:01:30,068 --> 00:01:32,621 所以我们看看能不能算出准确数字 31 00:01:32,621 --> 00:01:35,429 我们可以用理想气体方程了 32 00:01:35,429 --> 00:01:41,872 压强乘体积等于nRT 33 00:01:41,872 --> 00:01:44,316 现在 粒子数改变了吗 34 00:01:44,316 --> 00:01:47,981 在我改变情况缩小了体积时? 35 00:01:47,981 --> 00:01:48,650 不! 36 00:01:48,650 --> 00:01:49,758 我们有一样的粒子数 37 00:01:49,758 --> 00:01:50,925 我只是把容器缩小了 38 00:01:50,925 --> 00:01:55,200 所以n还是n R不变 那是个常数 39 00:01:55,200 --> 00:01:57,223 温度不变 40 00:01:57,223 --> 00:02:00,319 所以我原先的压强乘体积 41 00:02:00,319 --> 00:02:02,689 等于nRT 42 00:02:02,689 --> 00:02:04,311 而我的新压强乘体积—— 43 00:02:04,311 --> 00:02:07,946 让我叫这个P1和V1 44 00:02:07,946 --> 00:02:11,001 然后P2是这个 45 00:02:11,001 --> 00:02:15,595 不好意思 那是V2 46 00:02:15,595 --> 00:02:21,703 所以V2是这个 我们要算出P2 47 00:02:21,703 --> 00:02:23,134 P2是什么? 48 00:02:23,134 --> 00:02:31,354 我们知道P1乘V1等于nRT 49 00:02:31,354 --> 00:02:33,396 我们还知道既然气体的温度和 50 00:02:33,396 --> 00:02:35,984 摩尔数都不变 51 00:02:35,984 --> 00:02:40,787 P2乘V2等于nRT 52 00:02:40,787 --> 00:02:43,196 既然它们都等于同一个东西 53 00:02:43,196 --> 00:02:45,673 我们可以说压强乘体积 54 00:02:45,673 --> 00:02:47,799 只要温度不变 55 00:02:47,799 --> 00:02:49,201 就也不变 56 00:02:49,201 --> 00:02:55,764 所以P1乘V1也等于P2乘V2 57 00:02:55,764 --> 00:02:57,939 那P1是什么? 58 00:02:57,939 --> 00:03:03,233 P1 我们原先的压强 是3个大气压 59 00:03:06,633 --> 00:03:12,024 所以3大气压乘9升等于 60 00:03:12,024 --> 00:03:15,977 我们的新气压乘3升 61 00:03:15,977 --> 00:03:18,992 如果我们将等式两边同除以3 62 00:03:18,992 --> 00:03:24,701 3升就消掉了 63 00:03:24,701 --> 00:03:33,637 我们还有9大气压 64 00:03:33,637 --> 00:03:34,799 这有道理 65 00:03:34,799 --> 00:03:39,258 当你把体积缩小2/3 66 00:03:39,258 --> 00:03:40,304 或者当你使体积 67 00:03:40,304 --> 00:03:42,939 变为原来的1/3 68 00:03:42,939 --> 00:03:46,199 你的压强就会增加3倍 69 00:03:46,199 --> 00:03:51,571 所以这个乘3 这个乘1/3 70 00:03:51,571 --> 00:03:52,898 一般这是很有用的知识 71 00:03:52,898 --> 00:03:55,201 如果温度不变 72 00:03:55,201 --> 00:03:57,478 那么压强乘体积 73 00:03:57,478 --> 00:03:59,111 也是一个常数 74 00:03:59,111 --> 00:04:00,958 现在 你可以更进一步 75 00:04:00,958 --> 00:04:06,878 如果我们看看PV=nRT 76 00:04:06,878 --> 00:04:09,162 我们知道两个量不变 77 00:04:09,162 --> 00:04:11,840 在我们做的大部分练习中 78 00:04:11,840 --> 00:04:13,535 就是分子数 79 00:04:13,535 --> 00:04:15,529 以及显然R不会变 80 00:04:15,529 --> 00:04:18,265 所以如果我们将两边同除以T 81 00:04:18,265 --> 00:04:23,165 我们就有了PV/T=nR 82 00:04:23,165 --> 00:04:24,918 或者可以说它等于一个常数 83 00:04:24,918 --> 00:04:27,203 它对于任何系统都是一个常数 84 00:04:27,203 --> 00:04:28,629 如果我们不改变 85 00:04:28,629 --> 00:04:31,524 容器中的分子数的话 86 00:04:31,524 --> 00:04:33,373 所以 如果我们改变压强—— 87 00:04:33,373 --> 00:04:35,653 如果一开始有 88 00:04:35,653 --> 00:04:40,000 压强1 体积1 以及某个温度1 89 00:04:40,000 --> 00:04:41,501 那就等于这个常数 90 00:04:41,501 --> 00:04:44,192 如果我们改变其中一个 91 00:04:44,192 --> 00:04:44,731 我们回到 92 00:04:44,731 --> 00:04:48,861 压强2 体积2 温度2 93 00:04:48,861 --> 00:04:50,470 他们应该还等于这个常数 94 00:04:50,470 --> 00:04:51,467 所以他们相等 95 00:04:51,467 --> 00:04:55,350 举例来说 假设我开始有 96 00:04:55,350 --> 00:05:01,076 1个大气压的压强 97 00:05:01,076 --> 00:05:05,066 而体积是—— 98 00:05:05,066 --> 00:05:08,613 我换一下单位来试一种不同的做法 99 00:05:08,613 --> 00:05:10,639 ——2立方米 100 00:05:10,639 --> 00:05:20,209 假设温度是27摄氏度 101 00:05:20,209 --> 00:05:21,742 我刚写了摄氏度 102 00:05:21,742 --> 00:05:22,697 以为我想让你永远记住 103 00:05:22,697 --> 00:05:23,973 你要转换成开氏度 104 00:05:23,973 --> 00:05:27,830 所以27摄氏度加上273是 105 00:05:27,830 --> 00:05:33,154 正好300开氏度 106 00:05:33,154 --> 00:05:39,531 我们的新温度是 107 00:05:39,531 --> 00:05:40,631 实际上我们来算一下新温度 108 00:05:40,631 --> 00:05:41,418 会是什么 109 00:05:41,418 --> 00:05:46,270 假设新压强是2大气压 110 00:05:46,270 --> 00:05:47,884 压强增加了 111 00:05:47,884 --> 00:05:50,014 我们让容器缩小 112 00:05:50,014 --> 00:05:52,487 比如1立方米 113 00:05:52,487 --> 00:05:55,101 所以容器缩小了一半 114 00:05:55,101 --> 00:05:56,680 而压强增加了一半 115 00:05:56,680 --> 00:05:57,591 所以你可以猜一下 116 00:05:57,591 --> 00:06:02,154 你知道我们让压强升高了 117 00:06:02,154 --> 00:06:08,179 我来让容器更小一点 118 00:06:08,179 --> 00:06:08,771 实际上 算了 119 00:06:08,771 --> 00:06:10,709 我来让压强更大 120 00:06:10,709 --> 00:06:14,257 让压强变成5个大气压 121 00:06:14,257 --> 00:06:16,937 现在我们想知道第二个温度是什么 122 00:06:16,937 --> 00:06:18,810 我们建立起等式 123 00:06:18,810 --> 00:06:19,533 所以就得到 124 00:06:19,533 --> 00:06:28,103 2/300大气压乘立方米每开氏度 125 00:06:28,103 --> 00:06:32,687 等于2/T2 我们的新温度 126 00:06:32,687 --> 00:06:40,148 然后我们有1500等于2T2 127 00:06:40,148 --> 00:06:41,372 两边同除以2 128 00:06:41,372 --> 00:06:46,902 得到了T2等于750开氏度 129 00:06:46,902 --> 00:06:48,314 这有道理 对吧 130 00:06:48,314 --> 00:06:50,537 我们让压强升高了这么多 131 00:06:50,537 --> 00:06:53,288 而同时也减小了体积 132 00:06:53,288 --> 00:06:55,638 所以温度必须上升 133 00:06:55,638 --> 00:06:56,553 或者如果这么想 134 00:06:56,553 --> 00:06:58,176 或许我们升高了温度 135 00:06:58,176 --> 00:06:59,500 因此也使压强 136 00:06:59,500 --> 00:07:00,691 变得高多了 137 00:07:00,691 --> 00:07:03,874 尤其是当我们减小了体积时 138 00:07:03,874 --> 00:07:05,398 我想最好的理解方法是 139 00:07:05,398 --> 00:07:08,233 压强升高了这么多 140 00:07:08,233 --> 00:07:10,196 它增加了五倍 141 00:07:10,196 --> 00:07:12,477 他从1大气压变为5大气压 142 00:07:12,477 --> 00:07:14,374 因为一面 143 00:07:14,374 --> 00:07:18,032 我们将体积缩小了1/2 144 00:07:18,032 --> 00:07:19,685 所以压强应该加倍了 145 00:07:19,685 --> 00:07:21,903 我们就到了2大气压 146 00:07:21,903 --> 00:07:23,783 然后我们让温度高多了 147 00:07:23,783 --> 00:07:25,407 所以我们也在撞上容器壁 148 00:07:25,407 --> 00:07:27,901 我们使温度变为750开氏度 149 00:07:27,901 --> 00:07:29,892 所以温度升高了两倍还多 150 00:07:29,892 --> 00:07:33,879 于是我们得到了5大气压 151 00:07:33,879 --> 00:07:37,988 现在 另一件你可能会听到的概念 152 00:07:37,988 --> 00:07:39,689 是发生什么 153 00:07:39,689 --> 00:07:42,475 在标准温度和气压下 154 00:07:42,475 --> 00:07:44,038 我把这些都删了 155 00:07:44,038 --> 00:07:47,572 标准温度和气压 156 00:07:47,572 --> 00:07:51,532 我把这些不需要的都删掉 157 00:07:52,886 --> 00:07:56,809 标准温度和气压 158 00:07:56,809 --> 00:07:57,466 我提到这个 159 00:07:57,466 --> 00:07:58,690 是因为虽然它被称作 160 00:07:58,690 --> 00:07:59,881 标准温度和气压 161 00:07:59,881 --> 00:08:03,704 有时也称作STP 162 00:08:03,704 --> 00:08:05,740 世界的一大不幸是 163 00:08:05,740 --> 00:08:07,840 人们还没有完全标准化 164 00:08:07,840 --> 00:08:13,742 标准气压和温度是什么 165 00:08:13,742 --> 00:08:15,916 我在维基百科上查了一下 166 00:08:15,916 --> 00:08:16,882 你可能会看到的 167 00:08:16,882 --> 00:08:19,986 在大部分物理课以及标准化考试上的 168 00:08:19,986 --> 00:08:23,935 标准温度是0摄氏度 169 00:08:23,935 --> 00:08:26,837 也就是 当然 273开氏度 170 00:08:26,837 --> 00:08:30,302 标准气压是1个大气压 171 00:08:30,302 --> 00:08:31,241 在维基百科上 172 00:08:31,241 --> 00:08:38,533 他们写成101.325千帕斯卡 173 00:08:38,533 --> 00:08:41,341 或者101,000帕斯卡多一点 174 00:08:41,341 --> 00:08:44,246 当然 一帕斯卡是一牛顿每平方米 175 00:08:44,246 --> 00:08:45,968 在所有这些中 单位都是 176 00:08:45,968 --> 00:08:47,665 最难掌握的部分 177 00:08:47,665 --> 00:08:49,741 但假如我们设 178 00:08:49,741 --> 00:08:50,676 这些不同的 179 00:08:50,676 --> 00:08:52,195 标准温度与压强 180 00:08:52,195 --> 00:08:54,878 来自于不同的标准设定组织 181 00:08:54,878 --> 00:08:55,783 他们不能完全达成一致 182 00:08:55,783 --> 00:08:57,259 但如果我们把这个当成 183 00:08:57,259 --> 00:09:00,889 标准温度和压强的定义 184 00:09:00,889 --> 00:09:04,604 所以我们设温度 185 00:09:04,604 --> 00:09:07,227 等于0摄氏度 186 00:09:07,227 --> 00:09:11,203 也就等于273开氏度 187 00:09:11,203 --> 00:09:15,255 压强我们设为1大气压 188 00:09:15,255 --> 00:09:16,075 也可以写成 189 00:09:16,075 --> 00:09:22,440 101.325或3/8千帕 190 00:09:22,440 --> 00:09:26,349 我的问题是如果我有一种理想气体 191 00:09:26,349 --> 00:09:30,021 在标准温度与压强的情况下 192 00:09:30,021 --> 00:09:36,453 1升中有多少摩尔? 193 00:09:36,453 --> 00:09:37,583 不 我换一种说法 194 00:09:37,583 --> 00:09:40,868 1摩尔会占多少升? 195 00:09:40,868 --> 00:09:43,785 我再多说一点 196 00:09:43,785 --> 00:09:46,384 n等于1摩尔 197 00:09:46,384 --> 00:09:48,940 我想算出体积是什么 198 00:09:48,940 --> 00:09:50,657 如果我有1摩尔气体 199 00:09:50,657 --> 00:09:55,556 我有6.02乘10的23次方个这种气体气体的分子 200 00:09:55,556 --> 00:09:58,456 在标准压强1大气压 201 00:09:58,456 --> 00:10:01,002 以及标准温度273度 202 00:10:01,002 --> 00:10:03,455 气体的体积是多少? 203 00:10:03,455 --> 00:10:07,745 我们应用PV=nRT 204 00:10:07,745 --> 00:10:10,096 压强是1大气压 205 00:10:10,096 --> 00:10:11,748 但记住我们用的是大气压 206 00:10:11,748 --> 00:10:15,362 1大气压乘体积 207 00:10:15,362 --> 00:10:16,656 这是我们要解的 208 00:10:16,656 --> 00:10:18,043 我用紫色做 209 00:10:18,043 --> 00:10:22,007 等于1摩尔 我们有1摩尔这种气体 210 00:10:22,007 --> 00:10:29,312 乘R 乘温度 乘273 211 00:10:29,312 --> 00:10:31,786 现在这是开氏度 这是摩尔 212 00:10:31,786 --> 00:10:39,508 我们想让体积是升 213 00:10:39,508 --> 00:10:41,562 所以用哪一个版本的R呢? 214 00:10:41,562 --> 00:10:44,414 我们用的大气压 215 00:10:44,414 --> 00:10:46,609 我们想要升的体积 216 00:10:46,609 --> 00:10:48,029 当然 我们有开氏度的摩尔 217 00:10:48,029 --> 00:10:50,531 所以用这个版本 0.082 218 00:10:50,531 --> 00:10:52,210 那么这是1 219 00:10:52,210 --> 00:10:54,866 我们可以忽略这个1 220 00:10:54,866 --> 00:10:56,388 因此体积等于 221 00:10:56,388 --> 00:11:02,204 0.082乘273开氏度 222 00:11:02,204 --> 00:11:19,229 0.082乘273等于22.4升 223 00:11:19,229 --> 00:11:21,429 所以如果我有任何一种理想气体 224 00:11:21,429 --> 00:11:24,079 所有的气体都不是完全理想化的理想 225 00:11:24,079 --> 00:11:25,475 但如果我有一种理想气体 226 00:11:25,475 --> 00:11:26,930 它在标准温度 227 00:11:26,930 --> 00:11:29,099 也就是0摄氏度 228 00:11:29,099 --> 00:11:30,423 或者水的熔点 229 00:11:30,423 --> 00:11:32,423 也就是273开氏度 230 00:11:32,423 --> 00:11:33,713 我有一摩尔这种气体 231 00:11:33,713 --> 00:11:37,559 它在标准压强 1大气压 232 00:11:37,559 --> 00:11:42,479 那个气体应该占22.4升 233 00:11:42,479 --> 00:11:44,796 如果你想知道多少立方米 234 00:11:44,796 --> 00:11:46,385 它会占 235 00:11:46,385 --> 00:11:50,987 你只用把22.4升乘 236 00:11:50,987 --> 00:11:53,236 现在 这是多少立方米 237 00:11:53,236 --> 00:11:57,501 对于每一立方米都有1000升 238 00:11:57,501 --> 00:11:59,627 我知道这看起来很多 但这是真的 239 00:11:59,627 --> 00:12:02,482 只要想想一立方米有多大 240 00:12:02,482 --> 00:12:09,365 所以这就是0.0224立方米 241 00:12:09,365 --> 00:12:12,450 如果你有1大气压的某种东西 一摩尔 242 00:12:12,450 --> 00:12:14,748 在0摄氏度情况下 243 00:12:14,748 --> 00:12:16,083 反正这其实是 244 00:12:16,083 --> 00:12:17,712 很有用的数字 245 00:12:17,712 --> 00:12:22,248 人们会经常说你有2摩尔 246 00:12:22,248 --> 00:12:25,292 在标准温度与气压 247 00:12:25,292 --> 00:12:26,966 它会占多少升? 248 00:12:26,966 --> 00:12:29,614 好的 1摩尔占这么多 249 00:12:29,614 --> 00:12:31,780 2摩尔在标准温度与气压 250 00:12:31,780 --> 00:12:33,436 就会占两倍体积 251 00:12:33,436 --> 00:12:34,805 因为你只是用PV=nRT 252 00:12:34,805 --> 00:12:36,272 然后加倍 253 00:12:36,272 --> 00:12:38,790 其他都不变 254 00:12:38,790 --> 00:12:40,992 压强 其他一切都是固定的 255 00:12:40,992 --> 00:12:43,043 所以如果你把摩尔数加倍 256 00:12:43,043 --> 00:12:44,206 就会把体积加倍 257 00:12:44,206 --> 00:12:46,107 或者如果你把摩尔数减半 258 00:12:46,107 --> 00:12:47,674 就会把它的体积减半 259 00:12:47,674 --> 00:12:49,656 所以一个很有用的知识点是在升的单位中 260 00:12:49,656 --> 00:12:52,015 以及标准温度与气压的情况下 261 00:12:52,015 --> 00:12:52,911 当标准温度与气压 262 00:12:52,911 --> 00:12:56,516 被定义为1大气压以及273开氏度 263 00:12:56,516 --> 00:13:00,159 一种理想气体会占22.4升的体积