1 00:00:00,259 --> 00:00:02,233 先把视频暂停一下,自己想想怎么做 2 00:00:02,233 --> 00:00:04,601 这2个有理式的加法 3 00:00:04,601 --> 00:00:06,343 好了,我想您有自己的解决方法 4 00:00:06,343 --> 00:00:09,082 我们现在来一起做这道题 5 00:00:09,082 --> 00:00:10,777 第一个要考虑的事情我们 6 00:00:10,777 --> 00:00:12,101 就是您在做这个题的时候 7 00:00:12,101 --> 00:00:14,493 您要意识到它们有不同的分母 8 00:00:14,493 --> 00:00:15,932 而把分数式加起来很难的 9 00:00:15,932 --> 00:00:17,766 当它们有不同的分母的时候 10 00:00:17,766 --> 00:00:18,695 您必须重写它们 11 00:00:18,695 --> 00:00:21,017 让它们有共同的分母 12 00:00:21,017 --> 00:00:23,269 最简单的方法获取共同的分母 13 00:00:23,269 --> 00:00:25,336 就是把2个不同的分母相乘 14 00:00:25,336 --> 00:00:26,474 特别是遇到像这样的2个分母 15 00:00:26,474 --> 00:00:28,958 它们之间没有共同的因子 16 00:00:28,958 --> 00:00:31,257 它们本身就是一个因子 17 00:00:31,257 --> 00:00:33,486 它们之间没有任何共同的因子 18 00:00:33,486 --> 00:00:36,667 那我们就来建立这个共同的分母吧 19 00:00:36,667 --> 00:00:39,222 所以它应该等于 20 00:00:39,222 --> 00:00:42,682 它应该等于什么呢 21 00:00:42,682 --> 00:00:44,261 让我们想想,它应该等于 22 00:00:44,261 --> 00:00:46,118 我们共同的分母 23 00:00:46,118 --> 00:00:47,574 让我来写下来 24 00:00:47,574 --> 00:00:49,454 先来写下2x 25 00:00:49,454 --> 00:00:50,987 我用另一个颜色来表示吧 26 00:00:50,987 --> 00:00:54,903 所以我们用(2x-3) 27 00:00:54,903 --> 00:00:57,666 乘以(3x+1) 28 00:00:57,666 --> 00:01:00,961 乘以(3x+1) 29 00:01:00,961 --> 00:01:03,771 然后加上 30 00:01:03,771 --> 00:01:07,315 加上下面的式子 31 00:01:07,315 --> 00:01:10,240 同样的分母为(2x-3) 32 00:01:10,240 --> 00:01:13,096 (2x-3) 33 00:01:13,096 --> 00:01:14,872 乘以(3x+1) 34 00:01:14,872 --> 00:01:19,202 乘以(3x+1) 35 00:01:19,202 --> 00:01:21,287 那么第一个式子里分母从2x 36 00:01:21,287 --> 00:01:24,328 从(2x-3)变成现在的分母 37 00:01:24,328 --> 00:01:27,416 (2x-3)乘以(3x+1) 38 00:01:27,416 --> 00:01:29,844 我们在之前的分母上乘以了(3x+1) 39 00:01:29,844 --> 00:01:31,082 那么如果我们在分母上乘上什么数 40 00:01:31,082 --> 00:01:32,455 而我们并不想改变这个分数的值 41 00:01:32,455 --> 00:01:33,593 也就是这个有理式的值 42 00:01:33,593 --> 00:01:36,216 我们也需要在分子上乘以同样的数 43 00:01:36,216 --> 00:01:39,849 之前的分子是5x 44 00:01:39,849 --> 00:01:41,683 我用蓝色来表示 45 00:01:41,683 --> 00:01:45,119 所以说之前的分子是5x 46 00:01:45,119 --> 00:01:47,952 我们也要用它来乘以(3x+1) 47 00:01:47,952 --> 00:01:50,831 来乘以(3x+1) 48 00:01:50,831 --> 00:01:53,525 大家注意我并没有改变这个分数的值 49 00:01:53,525 --> 00:01:57,512 我是在分子分母上同时乘以(3x+1) 50 00:01:57,512 --> 00:02:02,232 只要(3x+1)不等于0这个式子就成立 51 00:02:02,232 --> 00:02:04,438 我们又用同样的方法来做另一个 52 00:02:04,438 --> 00:02:08,640 这个式子的分母是(3x+1) 53 00:02:08,640 --> 00:02:10,962 我们来乘以(2x-3) 54 00:02:10,962 --> 00:02:12,286 所以我要用之前的分子 55 00:02:12,286 --> 00:02:15,652 也就是-4x² 56 00:02:15,652 --> 00:02:19,321 也要来乘以(2x-3) 57 00:02:19,321 --> 00:02:22,270 写下(2x-3) 58 00:02:22,270 --> 00:02:24,081 我把圆括号加上 59 00:02:24,081 --> 00:02:27,726 这样就不会看起来减去4x² 60 00:02:27,726 --> 00:02:30,094 好了,我们现在可以重新写了 61 00:02:30,094 --> 00:02:33,042 它们就等于 62 00:02:33,042 --> 00:02:35,118 分母上 63 00:02:35,118 --> 00:02:38,647 在分子上,5x乘以3x 64 00:02:38,647 --> 00:02:42,269 就等于15x² 65 00:02:42,269 --> 00:02:47,215 5x乘以1, 就是加上5x 66 00:02:47,215 --> 00:02:49,412 我们再来看 67 00:02:49,412 --> 00:02:51,107 我现在用绿色 68 00:02:51,107 --> 00:02:55,727 我可以用负4x乘以2x 69 00:02:55,727 --> 00:02:59,860 应该得到负的8x² 70 00:02:59,860 --> 00:03:02,542 然后负的4x乘以负3 71 00:03:02,542 --> 00:03:05,592 变成正的12x² 72 00:03:05,592 --> 00:03:06,924 我做对了吗 73 00:03:06,924 --> 00:03:08,224 负的 74 00:03:08,224 --> 00:03:09,547 喔,我要特别小心 75 00:03:09,547 --> 00:03:12,984 我的直觉告诉我,我可能哪里做错了 76 00:03:12,984 --> 00:03:14,934 实际上,如果您把视频暂停一下,您可以发现 77 00:03:14,934 --> 00:03:17,395 我在哪里做错了 78 00:03:17,395 --> 00:03:20,792 负的4x²乘以2x 79 00:03:20,792 --> 00:03:23,722 是变成负8的x的立方 80 00:03:23,722 --> 00:03:28,534 - 8x³ 81 00:03:28,534 --> 00:03:32,720 然后负4x²乘以负3应该等于负12x² 82 00:03:32,720 --> 00:03:36,064 这里我们整个的分母 83 00:03:36,064 --> 00:03:37,201 整个分母 84 00:03:37,201 --> 00:03:38,548 我们有一个共同的分母 85 00:03:38,548 --> 00:03:40,777 所以我们分子可以全部加起来 86 00:03:40,777 --> 00:03:43,426 分母就是(2x-3) 87 00:03:43,426 --> 00:03:46,064 (2x-3) 88 00:03:46,064 --> 00:03:49,004 乘以(3x+1) 89 00:03:49,004 --> 00:03:51,871 乘以(3x+1) 90 00:03:51,871 --> 00:03:54,123 现在我们来看这么简化它 91 00:03:54,123 --> 00:03:57,350 整个式子就应该变成 92 00:03:57,350 --> 00:03:59,022 让我来画出来 93 00:03:59,022 --> 00:04:01,762 我们要确定的是这是一个优理式 94 00:04:01,762 --> 00:04:05,291 让我们来看看 95 00:04:05,291 --> 00:04:09,796 我们这里最高的方次向是负的8x³ 96 00:04:09,796 --> 00:04:11,894 我们写下来负8 97 00:04:11,894 --> 00:04:15,404 负8x³ 98 00:04:15,404 --> 00:04:18,688 然后我们有15x² 99 00:04:18,688 --> 00:04:21,057 我们还有12x² 100 00:04:21,057 --> 00:04:23,143 我们可以把这2项加起来 101 00:04:23,143 --> 00:04:26,853 得到27x² 102 00:04:26,853 --> 00:04:30,631 好了,我们已经做好这个 103 00:04:30,631 --> 00:04:32,999 绿色部分我们已经完成 104 00:04:32,999 --> 00:04:35,901 我们已经做好 105 00:04:35,901 --> 00:04:38,850 我们已经做好这2部分,现在还剩下5x 106 00:04:38,850 --> 00:04:42,890 那就把加5x写下 107 00:04:42,890 --> 00:04:45,677 然后这就是整个分子 108 00:04:45,677 --> 00:04:50,677 分母呢,就是(2x-3) 乘以(3x+1) 109 00:04:51,984 --> 00:04:53,981 乘以3x+1 110 00:04:53,981 --> 00:04:55,630 现在我们 111 00:04:55,630 --> 00:04:58,161 做完了 112 00:04:58,161 --> 00:05:00,065 看起来好像 113 00:05:00,065 --> 00:05:01,806 不能再往下简化了 114 00:05:01,806 --> 00:05:03,617 当然你可以把分子的x提出来放在括弧前面 115 00:05:03,617 --> 00:05:05,057 但是也并不能抵减任何项 116 00:05:05,057 --> 00:05:06,357 不能与分母的任何项相抵减 117 00:05:06,357 --> 00:05:09,115 看起来我们就完成了