1 00:00:00,259 --> 00:00:02,233 영상을 일시정지 시키고 2 00:00:02,233 --> 00:00:04,601 이 유리식을 풀어보십시오 3 00:00:04,601 --> 00:00:06,343 다 풀었죠? 4 00:00:06,343 --> 00:00:09,082 함께 풀어봅시다 5 00:00:09,082 --> 00:00:10,777 이 문제가 잘 풀리지않는 6 00:00:10,777 --> 00:00:12,101 첫 번째 이유는 7 00:00:12,101 --> 00:00:14,493 두 분수가 다른 분모를 가지기 때문입니다 8 00:00:14,493 --> 00:00:15,932 그렇기에 두 분수를 더하기 힘듭니다 9 00:00:15,932 --> 00:00:17,766 이런 경우에는 분수를 통분해야합니다 10 00:00:17,766 --> 00:00:18,695 이런 경우에는 분수를 통분해야합니다 11 00:00:18,695 --> 00:00:21,017 동일한 분모를 가지도록 말이죠 12 00:00:21,017 --> 00:00:23,269 공통분모를 구하는 가장 쉬운 방법은 13 00:00:23,269 --> 00:00:25,336 두 분모를 곱하는 것 입니다 14 00:00:25,336 --> 00:00:26,474 이 경우처럼 분모가 서로소인 경우에는 더욱 유용합니다 15 00:00:26,474 --> 00:00:28,958 이 경우처럼 분모가 서로소인 경우에는 더욱 유용합니다 16 00:00:28,958 --> 00:00:31,257 두 분모는 모두 계수가 낮습니다 17 00:00:31,257 --> 00:00:33,486 또한 서로소이기도 하지요 18 00:00:33,486 --> 00:00:36,667 그러면 공통분모를 구하도록 합시다 19 00:00:36,667 --> 00:00:39,222 그러니 이 첫 분수의 값은 20 00:00:39,222 --> 00:00:42,682 어떤 수를 우리가 구할 공통분모로 나눈 값입니다 21 00:00:42,682 --> 00:00:44,261 어떤 수를 우리가 구할 공통분모로 나눈 값입니다 22 00:00:44,261 --> 00:00:46,118 어떤 수를 우리가 구할 공통분모로 나눈 값입니다 23 00:00:46,118 --> 00:00:47,574 저희의 공통분모를 24 00:00:47,574 --> 00:00:49,454 2x - 3 곱하기 3x + 1 입니다 25 00:00:49,454 --> 00:00:50,987 2x - 3 곱하기 3x + 1 입니다 26 00:00:50,987 --> 00:00:54,903 서로 다른 색으로 칠하겠습니다 27 00:00:54,903 --> 00:00:57,666 28 00:00:57,666 --> 00:01:00,961 29 00:01:00,961 --> 00:01:03,771 다음으로 두번째 분수는 30 00:01:03,771 --> 00:01:07,315 또 다른 어떤 값을 31 00:01:07,315 --> 00:01:10,240 2x - 3 곱하기 3x + 1으로 32 00:01:10,240 --> 00:01:13,096 2x - 3 곱하기 3x + 1으로 33 00:01:13,096 --> 00:01:14,872 나눈것과 같습니다 34 00:01:14,872 --> 00:01:19,202 나눈것과 같습니다 35 00:01:19,202 --> 00:01:21,287 첫 분수의 분모가 36 00:01:21,287 --> 00:01:24,328 처음의 2x - 3에서 공통분모 37 00:01:24,328 --> 00:01:27,416 (2x-3)(3x+1)로 바꾸기 위해서는 38 00:01:27,416 --> 00:01:29,844 분모를 3x +1 으로 곱하여야 한다 39 00:01:29,844 --> 00:01:31,082 이 때 40 00:01:31,082 --> 00:01:32,455 분수의 값은 그대로여야 하기에 41 00:01:32,455 --> 00:01:33,593 분수의 값은 그대로여야 하기에 42 00:01:33,593 --> 00:01:36,216 분자에게도 3 + 1을 곱하여야한다 43 00:01:36,216 --> 00:01:39,849 처음의 분자는 5x이었고 44 00:01:39,849 --> 00:01:41,683 파란 색으로 칠합시다 45 00:01:41,683 --> 00:01:45,119 처음의 분자를 가지고 46 00:01:45,119 --> 00:01:47,952 그 값에 3x + 1을 곱합니다 47 00:01:47,952 --> 00:01:50,831 그 값에 3x + 1을 곱합니다 48 00:01:50,831 --> 00:01:53,525 이 분수의 값은 변하지 않습니다 49 00:01:53,525 --> 00:01:57,512 분수에 3x + 1 분의 3x + 1 그러니 50 00:01:57,512 --> 00:02:02,232 3x + 1이 0이 아닌 이상 1인 수를 곱했기 때문입니다 51 00:02:02,232 --> 00:02:04,438 그러면 오른쪽 분수에도 같은 작업을 반복합니다 52 00:02:04,438 --> 00:02:08,640 오른쪽의 분모 3x + 1입니다 53 00:02:08,640 --> 00:02:10,962 그 값에 2x - 3을 곱했기때문에 54 00:02:10,962 --> 00:02:12,286 분자인 -4x²에 55 00:02:12,286 --> 00:02:15,652 분자인 -4x²에 56 00:02:15,652 --> 00:02:19,321 2x - 3을 곱하면 됩니다 57 00:02:19,321 --> 00:02:22,270 2x - 3을 곱하면 됩니다 58 00:02:22,270 --> 00:02:24,081 그러면 -4x²에 괄호를 칩시다 59 00:02:24,081 --> 00:02:27,726 4x²으로 빼는 것처럼 보이지 않도록 말이죠 60 00:02:27,726 --> 00:02:30,094 그러면 이 식을 새로 세울 수 있습니다 61 00:02:30,094 --> 00:02:33,042 첫 분수의 분자를 정리해보면 62 00:02:33,042 --> 00:02:35,118 첫 분수의 분자를 정리해보면 63 00:02:35,118 --> 00:02:38,647 5x 곱하기 3x인 64 00:02:38,647 --> 00:02:42,269 15x²와 65 00:02:42,269 --> 00:02:47,215 5x곱하기 1인 5x입니다 66 00:02:47,215 --> 00:02:49,412 그리고 왼쪽의 경우에는 67 00:02:49,412 --> 00:02:51,107 초록색으로 하도록 하지요 68 00:02:51,107 --> 00:02:55,727 먼저 -4x에 2x를 곱하여 69 00:02:55,727 --> 00:02:59,860 -8x²를 얻고 70 00:02:59,860 --> 00:03:02,542 -4x에 -3을 곱하여 71 00:03:02,542 --> 00:03:05,592 12x²을 얻습니다 72 00:03:05,592 --> 00:03:06,924 맞는가요? 73 00:03:06,924 --> 00:03:08,224 아닙니다 74 00:03:08,224 --> 00:03:09,547 조심히 다시 계산해 봅시다 75 00:03:09,547 --> 00:03:12,984 잠시 이 동영상을 멈추고 무엇을 틀리게 하였는지 보는 것도 좋습니다 76 00:03:12,984 --> 00:03:14,934 잠시 이 동영상을 멈추고 무엇을 틀리게 하였는지 보는 것도 좋습니다 77 00:03:14,934 --> 00:03:17,395 잠시 이 동영상을 멈추고 무엇을 틀리게 하였는지 보는 것도 좋습니다 78 00:03:17,395 --> 00:03:20,792 -4x² 곱하기 2x는 79 00:03:20,792 --> 00:03:23,722 -8곱하기 x의 세제곱 80 00:03:23,722 --> 00:03:28,534 -8x³입니다 81 00:03:28,534 --> 00:03:32,720 또한 -4x² 곱하기 -3은 12x²입니다 82 00:03:32,720 --> 00:03:36,064 이제는 분모를 봅시다 83 00:03:36,064 --> 00:03:37,201 이제는 분모를 봅시다 84 00:03:37,201 --> 00:03:38,548 두 분수의 분모가 같으므로 85 00:03:38,548 --> 00:03:40,777 분자를 그저 모두 더하면 됩니다 86 00:03:40,777 --> 00:03:43,426 분모는 2x - 3 곱하기 3x + 1 87 00:03:43,426 --> 00:03:46,064 분모는 2x - 3 곱하기 3x + 1 88 00:03:46,064 --> 00:03:49,004 (2x - 3)(3x + 1)입니다 89 00:03:49,004 --> 00:03:51,871 (2x - 3)(3x + 1)입니다 90 00:03:51,871 --> 00:03:54,123 어떻게 간단하게 할 수 있을까요? 91 00:03:54,123 --> 00:03:57,350 92 00:03:57,350 --> 00:03:59,022 93 00:03:59,022 --> 00:04:01,762 94 00:04:01,762 --> 00:04:05,291 95 00:04:05,291 --> 00:04:09,796 이곳에서 최고차항은 -8x³입니다 96 00:04:09,796 --> 00:04:11,894 먼저 -8x³을 가장 앞에 두고 97 00:04:11,894 --> 00:04:15,404 먼저 -8x³을 가장 앞에 두고 98 00:04:15,404 --> 00:04:18,688 다음으로 차수가 높은 99 00:04:18,688 --> 00:04:21,057 15x²과 12x²을 100 00:04:21,057 --> 00:04:23,143 합해 봅니다 101 00:04:23,143 --> 00:04:26,853 결과는 27x²입니다 102 00:04:26,853 --> 00:04:30,631 그러니 이 박스 친 항들은 오른쪽으로 옮겼습니다 103 00:04:30,631 --> 00:04:32,999 -8x³는 초록색으로 표시하겠습니다 104 00:04:32,999 --> 00:04:35,901 -8x³는 초록색으로 표시하겠습니다 105 00:04:35,901 --> 00:04:38,850 그러면 남는 것은 5x밖게 없습니다 106 00:04:38,850 --> 00:04:42,890 그래서 +5를 하겠습니다 107 00:04:42,890 --> 00:04:45,677 그러면 분자가 끝나고 108 00:04:45,677 --> 00:04:50,677 분모는 2x - 3 곱하기 3x + 1이 되겠군요 109 00:04:51,984 --> 00:04:53,981 분모는 2x - 3 곱하기 3x + 1이 되겠군요 110 00:04:53,981 --> 00:04:55,630 끝입니다 111 00:04:55,630 --> 00:04:58,161 끝입니다 112 00:04:58,161 --> 00:05:00,065 이것을 더욱 간단하게 할 수는 없을 것 같군요 113 00:05:00,065 --> 00:05:01,806 이것을 더욱 간단하게 할 수는 없을 것 같군요 114 00:05:01,806 --> 00:05:03,617 분자를 x로 약분할 수는 있지만 115 00:05:03,617 --> 00:05:05,057 분모와 약분되지는 않습니다 116 00:05:05,057 --> 00:05:06,357 분모와 약분되지는 않습니다 117 00:05:06,357 --> 00:05:09,115 끝난 것 같군요