გაყავით და დაწერეთ პასუხი
შერეული რიცხვის სახით.
აქ გვაქვს 3/5 გაყოფილი 1/2-ზე.
როდესაც რაიმე წილადებს ვყოფთ,
უნდა გახსოვდეთ,
წილადზე გაყოფა იგივეა, რაც
მის შებრუნებულზე გამრავლება.
ეს იგივეა, რაც 3/5 გამრავლებული --
ეს არის ჩვენი 3/5
და გაყოფის მაგივრად
გვინდა გამრავლება, ხოლო
1/2-ის მაგივრად გვჭირდება
მისი შებრუნებული
რაც იქნება 2/1 --
ანუ, 3/5 გამრავლებული 2/1-ზე.
1/2-ზე გაყოფა ზუსტად იგივეა,
რაც გამრავლება 2/1-ზე.
და ჩვენ ამ ამოცანის ამოხსნას
გავაგრძელებთ, როგორც
ამოცანას გამრავლებაზე.
სამჯერ ორი არის ექვსი,
ჩვენი მრიცხველი არის ექვსი.
ხუთჯერ ერთი არის ხუთი.
შესაბამისად 3/5 გამრავლებული 1/2-ზე
როგორც არაწესიერი წილადი იქნება 6/5.
ამოცანა მოითხოვს, რომ პასუხი
შერეული რიცხვის სახით ჩავწეროთ.
ექვსი უნდა გავყოთ ხუთზე,
რომ ვნახოთ
რამდენჯერ ჩაეტევა.
ეს იქნება შერეული რიცხვის
მთელი ნაწილი.
ხოლო შემდგომ რაც დარჩება,
ნაშთი
მრიცხველი შეფარდებული ხუთთან,
ეს იქნება წილადი ნაწილი.
ჩვენ ავიღებთ ექვსს და გავყოფთ ხუთზე.
ხუთი ექვსში ჩაეტევა ერთხელ.
ერთი გამრავლებული ხუთზე არის ხუთი.
გამოვაკლოთ.
ნაშთად დარჩა ერთი.
6/5 უდრის ერთ მთელს,
ანუ 5/5-ს და 1/5-ს,
ეს ერთიანი მივიღეთ ნაშთად.
და მოვჩით!
3/5 გაყოფილი 1/2-ზე
არის ერთი მთლი 1/5.
ახლა დაგვრჩა გავარკვიოთ, თუ რატომ
მუშაობს ეს მეთოდი?
რატომ არის გაყოფა 1/2-ზე
იგივე რაც გამრავლება ორზე?
(2/1 არის იგივე, რაც 2.)
ამის ასახსენელად მე გავაკეთებ
-- საკმაოდ ადვილ --
ცდას, მაგრამ იმედია იგი
თვალსაჩინოდ ახსნის საკითხს.
მოდით ავიღებ ოთხ ნივთს.
ჩვენ გვაქვს ოთხი საგანი:
1, 2, 3, 4.
მე მაქვს ოთხი საგანი და
მათ დავყოფ
ორის ტოლ ჯგუფებად
ეს არის ერთი ორის ტოლი ჯგუფი,
ეს კი მეორე ორის ტოლი ჯგუფია
რამდენი ორის ტოლი ჯგუფი მაქვს?
ოთხი გაყოფილი ორზე, მე მაქვს
ორი ორის ტოლი ჯგუფი, ესე იგი,
ეს უდრის ორს.
რა იქნება, თუ მე ავიღებ
ამავე ოთხ საგანს
1, 2, 3, 4.
ვიღებ იგივე ოთხ საგანს.
ორის ტოლ ჯგუფებად დაყოფის მაგივრად,
მე გავყოფ მათ
1/2-ის ტოლ ჯგუფებად,
სადაც თითო ჯგუფში
იქნება მხოლოდ საგნის ნახევარი.
ვთქვათ, ეს არის ერთი მსგავსი ჯგუფი.
ეს არის მეორე.
ეს არის მესამე.
თითო ჯგუფში წრეწირის ნახევარია.
ეს არის მეოთხე.
ეს მეხუთე.
ეს არის მეექვსე.
ეს მეშვიდე დაბოლოს
ეს მერვე.
ჩვენ გვაქვს რვა 1/2-ის ტოლი ჯგუფი,
ეს უდრის რვას.
დააკვირდით, თითო საგანი დაგაიქცა
ორ ჯგუფად.
რამდენი ჯგუფი გვაქვს?
ჩვენ გვაქვს ოთხი საგანი,
და თითოეული
გადაიქცა ორ ჯგუფად.
სხვა ფერს ვეძებ.
თითოეული მათგანი
ორ ჯგუფად გადაიქცა და
მივიღეთ ჯამში რვა.
შესაბამისად 1/2-ზე გაყოფა იგივეა,
რაც ორზე გამრავლება.
ამის შემოწმება სხვა რიცხვებითაც შეგიძლიათ,
იმედია, კარგად გაიგეთ ეს მეთოდი.