0:00:00.290,0:00:03.128 La oss regne noen eksempler med eksponenter. 0:00:03.128,0:00:06.487 Vi kan se på en brøk opphevet i noe. 0:00:06.487,0:00:14.527 Vi har 2/3 og opphever bøken i tredje potens. 0:00:14.527,0:00:16.958 Vi har allerede lært, at vi kan se det på to måter. 0:00:16.958,0:00:19.885 Den ene er å ta tre 2/3. 0:00:19.885,0:00:26.339 og gange de med hverandre. 0:00:26.339,0:00:29.719 1, 2, og 2/3. 0:00:29.719,0:00:34.231 Vi ganger de. 0:00:34.231,0:00:37.170 . 0:00:37.170,0:00:40.746 Telleren blir 2 ganger 2 ganger 2, som er 8. 0:00:40.746,0:00:47.098 Nevneren blir 3 ganger 3 ganger 3, som er 27. 0:00:47.098,0:00:53.891 Vi kan også se det som, at vi starter med 1 og ganger det med 2/3 tre ganger. 0:00:53.891,0:00:56.963 Vi ganger det med 2/3 en, 2, 3 ganger. 0:00:56.963,0:00:59.901 Vi får samme svar. 0:00:59.901,0:01:01.837 La oss lage et eksempel til. 0:01:01.837,0:01:05.869 Vi har 4/9 og kvadrerer det. Det betyr, at vi opphever den i annen. 0:01:05.869,0:01:08.676 Når setter vi noe i annen, kalles det å kvadrere. 0:01:08.676,0:01:12.846 . 0:01:12.846,0:01:15.964 La oss kvadrere 4/9. 0:01:15.964,0:01:19.626 Prøv og pause videoen og reng ut selv. 0:01:19.626,0:01:26.989 Igjen kan vi se det som to 4/9 ganget med hverandre. 0:01:26.989,0:01:32.741 Vi kan også starte med 1 og så gange det med 4/9 to ganger. 0:01:32.741,0:01:37.470 Uansett, den nye telleren er 4 ganger 4, som er 16, 0:01:37.470,0:01:45.498 og nervneren er 9 ganger 9, som er 81.