1 00:00:00,630 --> 00:00:02,430 在早先的视频里,我们介绍过 2 00:00:02,430 --> 00:00:04,100 如何用大小和方向 3 00:00:04,100 --> 00:00:06,670 来完全定义一个向量,两者缺一不可。 4 00:00:06,670 --> 00:00:08,260 此处有一个已经被这样定义的向量。 5 00:00:08,260 --> 00:00:09,880 我们已知它的大小 6 00:00:09,880 --> 00:00:12,570 等于3个单位长度。 7 00:00:12,570 --> 00:00:15,190 这两边的平行线, 8 00:00:15,190 --> 00:00:17,170 看上去像双重绝对值的符号, 9 00:00:17,170 --> 00:00:19,580 代表向量a的长度。 10 00:00:19,580 --> 00:00:23,150 这个式子相当于指定了 11 00:00:23,150 --> 00:00:26,200 图中箭头的长度为3个单位长度。 12 00:00:26,200 --> 00:00:27,560 与此同时我们还规定了它的方向。 13 00:00:27,560 --> 00:00:29,610 如图所示,这个向量的方向是 14 00:00:29,610 --> 00:00:32,270 相对正东方向逆时针旋转30°。 15 00:00:32,270 --> 00:00:34,860 在本视频中,我们将会介绍 16 00:00:34,860 --> 00:00:38,220 定义该向量的另一种方法。 17 00:00:38,220 --> 00:00:41,050 这是一种通过分量来定义向量的方法。 18 00:00:41,050 --> 00:00:42,530 我们将关注 19 00:00:42,530 --> 00:00:44,100 这个向量的尾部 20 00:00:44,100 --> 00:00:47,300 和头部, 21 00:00:47,300 --> 00:00:50,450 考虑从它的尾部走到头部, 22 00:00:50,450 --> 00:00:53,530 横坐标x改变了多少? 23 00:00:53,530 --> 00:00:55,510 我们可以看出,x的变化量 24 00:00:55,510 --> 00:00:58,340 等于这条红线的长度。 25 00:00:58,340 --> 00:01:00,980 我们的横坐标从这个值变成了这个值。 26 00:01:00,980 --> 00:01:05,370 我们还要考虑纵坐标y的变化。 27 00:01:05,370 --> 00:01:07,980 假如我们从此处向上走到这里, 28 00:01:07,980 --> 00:01:11,940 y方向的变化量就对应这条紫线的长度。 29 00:01:11,940 --> 00:01:13,500 让我们给它们做上标记。 30 00:01:13,500 --> 00:01:18,500 x的变化量记作Δx,y的变化量记作Δy。 31 00:01:18,790 --> 00:01:19,920 请设想一下, 32 00:01:19,920 --> 00:01:22,780 假如有人告诉了你Δx和Δy, 33 00:01:22,780 --> 00:01:25,390 你应该可以相应重建出这个向量: 34 00:01:25,390 --> 00:01:27,490 从这里出发,先改变x, 35 00:01:27,490 --> 00:01:31,200 再改变y,得到向量的头部 36 00:01:31,200 --> 00:01:34,740 相对尾部的位置。 37 00:01:34,740 --> 00:01:38,200 我们相应将上述定义记作: 38 00:01:38,200 --> 00:01:42,870 向量a,等于,写上两个括号, 39 00:01:42,870 --> 00:01:46,000 在括号中填入Δx,逗号,Δy。 40 00:01:46,000 --> 00:01:47,780 对图中的这个向量而言, 41 00:01:47,780 --> 00:01:50,340 更具体地说, 42 00:01:50,340 --> 00:01:53,550 我们已知它的长度为3。 43 00:01:53,550 --> 00:01:55,540 它的大小为3。 44 00:01:55,540 --> 00:01:58,350 我们还知道这条线处于水平方向, 45 00:01:58,350 --> 00:02:00,290 而这条线处于竖直方向。 46 00:02:00,290 --> 00:02:02,420 此处是一个直角。 47 00:02:02,420 --> 00:02:05,170 于是我们可以使用以往的几何知识。 48 00:02:05,170 --> 00:02:08,020 别担心,有必要的话你可以复习一下。 49 00:02:08,020 --> 00:02:09,620 我们可以使用一点几何, 50 00:02:09,620 --> 00:02:11,490 或者三角学知识: 51 00:02:11,490 --> 00:02:13,610 我们已知这个角的大小, 52 00:02:13,610 --> 00:02:17,210 以及这条斜边的长度,那么这条与30°角 53 00:02:17,210 --> 00:02:20,180 相对的边的长度就等于斜边的一半, 54 00:02:20,180 --> 00:02:22,020 也就是3/2。 55 00:02:22,020 --> 00:02:24,200 而x方向的变化量则等于 56 00:02:24,200 --> 00:02:26,960 根号3乘以3/2。 57 00:02:26,960 --> 00:02:31,080 也就是二分之三倍根号3。 58 00:02:31,080 --> 00:02:33,980 于是我们可以在括号中填入: 59 00:02:33,980 --> 00:02:37,680 x分量等于二分之三倍根号3, 60 00:02:37,680 --> 00:02:42,420 y分量等于3/2。 61 00:02:42,420 --> 00:02:43,820 不少同学可能会觉得 62 00:02:43,820 --> 00:02:47,260 这长得很像坐标平面上的坐标: 63 00:02:47,260 --> 00:02:48,580 这对应横坐标, 64 00:02:48,580 --> 00:02:50,300 这对应纵坐标。 65 00:02:50,300 --> 00:02:51,970 不过,当你在处理向量时, 66 00:02:51,970 --> 00:02:54,610 这种理解并不确切。 67 00:02:54,610 --> 00:02:57,000 是的,当这个向量的尾巴 68 00:02:57,000 --> 00:03:00,140 刚好落在原点上时, 69 00:03:00,140 --> 00:03:04,670 它的头部在坐标平面上的坐标会恰好等于这个。 70 00:03:04,670 --> 00:03:07,470 但我们知道,向量并不是 71 00:03:07,470 --> 00:03:10,180 被它尾部的位置所定义的。 72 00:03:10,180 --> 00:03:12,200 我们可以把这个向量在平面上随意平移, 73 00:03:12,200 --> 00:03:13,840 得到的都还是同一个向量。 74 00:03:13,840 --> 00:03:15,590 它的起点在哪儿都行。 75 00:03:15,590 --> 00:03:19,000 所以,在向量语境下, 76 00:03:19,000 --> 00:03:21,440 这两者并不代表横坐标和纵坐标, 77 00:03:21,440 --> 00:03:26,440 而是代表横坐标的变化量,和纵坐标的变化量。 78 00:03:27,070 --> 00:03:28,480 让我们再看一个 79 00:03:28,480 --> 00:03:30,880 反其道而行之的例子。 80 00:03:30,880 --> 00:03:34,790 假设我们用刚才的方法定义了一个向量b, 81 00:03:34,790 --> 00:03:39,200 它的x分量等于根号2, 82 00:03:39,200 --> 00:03:43,520 它的y分量也等于根号2。 83 00:03:43,520 --> 00:03:46,260 这个向量长什么样? 84 00:03:46,260 --> 00:03:49,380 假设这是它的尾部, 85 00:03:49,380 --> 00:03:51,410 它的x分量,也就是横坐标的变化量, 86 00:03:51,410 --> 00:03:53,030 等于根号2。 87 00:03:53,030 --> 00:03:55,460 x的变化量大致长这样。 88 00:03:55,460 --> 00:04:00,460 这条线对应横坐标的变化量,等于根号2。 89 00:04:00,800 --> 00:04:03,980 而这个向量的y分量也等于根号2。 90 00:04:03,980 --> 00:04:07,230 我们在这里写上,纵坐标的变化量, 91 00:04:07,230 --> 00:04:08,970 也等于根号2。 92 00:04:08,970 --> 00:04:12,850 于是这个向量将会长这样子: 93 00:04:12,850 --> 00:04:17,850 它从这里出发,指向这里。 94 00:04:18,580 --> 00:04:20,590 借助一点几何知识, 95 00:04:20,590 --> 00:04:21,980 我们可以求出该向量的 96 00:04:21,980 --> 00:04:24,260 大小和方向。 97 00:04:24,260 --> 00:04:26,760 根据勾股定理, 98 00:04:26,760 --> 00:04:28,760 两条直角边的平方和 99 00:04:28,760 --> 00:04:30,410 等于斜边的平方。 100 00:04:30,410 --> 00:04:32,380 于是我们可以算得, 101 00:04:32,380 --> 00:04:34,510 斜边的长度等于2, 102 00:04:34,510 --> 00:04:39,370 也就是说,向量b的长度等于2。 103 00:04:39,370 --> 00:04:42,420 假如想进一步求出这个角的度数, 104 00:04:42,420 --> 00:04:43,870 你可以用一点三角学知识, 105 00:04:43,870 --> 00:04:46,110 实际上一点几何知识就够了。 106 00:04:46,110 --> 00:04:49,500 你看,此处是一个直角, 107 00:04:49,500 --> 00:04:52,130 而这两条边长度相等。 108 00:04:52,130 --> 00:04:53,590 所以这两个角大小相等, 109 00:04:53,590 --> 00:04:55,600 都等于45°。 110 00:04:55,600 --> 00:04:58,690 于是我们也确定了这个向量的方向: 111 00:04:58,690 --> 00:05:02,770 相对正东方向逆时针旋转45°。 112 00:05:02,770 --> 00:05:05,360 希望你可以体会到,上述两种针对向量的表达方式 113 00:05:05,360 --> 00:05:06,540 其实是一回事。 114 00:05:06,540 --> 00:05:08,950 你既可以规定向量的长度和方向, 115 00:05:08,950 --> 00:05:10,200 也可以规定它的分量, 116 00:05:10,200 --> 00:05:12,350 这两种表达方式可以相互转化。 117 00:05:12,350 --> 00:05:15,283 关于这一点,我们在接下来的视频中会做更多的练习。