0:00:00.367,0:00:07.553 В това видео искам да разгледаме какво са[br]обиколка и лице. 0:00:07.553,0:00:09.503 Пиша обиколка вляво 0:00:09.503,0:00:11.403 и лице вдясно. 0:00:11.403,0:00:13.733 Може би това са познати за теб понятия.[br] 0:00:13.733,0:00:17.133 Но нека да ги преговорим за всеки случай,[br]ако не са ти познати. 0:00:17.133,0:00:21.533 Обиколката е дължината на нещо, 0:00:21.533,0:00:25.733 ако трябва да го оградиш или да го измериш, 0:00:25.733,0:00:29.613 или пък да сложиш лента около фигура[br]и искаш да знаеш нейната дължина. 0:00:29.613,0:00:35.910 Нека да имаме правоъгълник.[br]Той е фигура, 0:00:35.910,0:00:44.867 която има 4 страни и 4 прави ъгъла 0:00:44.867,0:00:48.200 и дължините на противоположните му страни 0:00:48.200,0:00:49.557 са равни. 0:00:49.557,0:00:55.167 Тази страна е равна на тази[br]и тази страна е равна на тази. 0:00:55.167,0:01:01.417 Сега ще обознача точките ABCD и нека кажем, 0:01:01.417,0:01:03.153 че знаем следното: 0:01:03.153,0:01:12.983 Знаем, че AB = 7 и BC = 5. 0:01:12.983,0:01:25.533 Сега искаме да знаем каква [br]е обиколката на ABCD. 0:01:25.533,0:01:28.737 Ще я намерим, като съберем[br]дължините на страните му. 0:01:28.737,0:01:32.623 Ако трябваше да построя ограда около този участък земя, 0:01:32.623,0:01:35.353 щях да измеря дължините на страните. 0:01:35.353,0:01:43.533 Вече знаем, че дължината на AB = 7[br]плюс дължината на BC, това е 5, 0:01:43.533,0:01:47.963 това ни е дадено, ВС е 5. 0:01:47.963,0:01:49.953 Плюс 5, плюс... 0:01:49.953,0:01:54.200 знаем, че DC е със същата дължина като AB,[br]така че ще бъде също 7, 0:01:54.200,0:01:56.030 т.е. плюс 7. 0:01:56.030,0:01:59.130 И накрая DA, или AD, това е едно и също, 0:01:59.130,0:02:04.360 което е същото като BC, [br]още веднъж плюс 5. 0:02:04.360,0:02:07.467 Следователно 7 + 5 е 12,[br]плюс 7 +5 е отново 12, 0:02:07.467,0:02:14.237 или обиколката е равна на 24. 0:02:14.237,0:02:15.770 Можем да го обясним и по друг начин. 0:02:15.770,0:02:21.850 Нека имаме квадрат,[br]който е частен случай на правоъгълник. 0:02:21.850,0:02:26.600 Квадратът има 4 равни страни [br]и 4 прави ъгъла. 0:02:26.600,0:02:29.830 и всичките му страни са равни. 0:02:29.830,0:02:43.217 Нека го начертаем, това са ABCD. 0:02:43.217,0:02:57.260 Дадено е, че това е квадрат[br]и обиколката му е 36. 0:02:57.260,0:03:00.650 Като знаем това, можем ли да кажем каква [br]е дължината на всяка от страните му? 0:03:00.650,0:03:03.820 Всички страни са равни, нека[br]означим всяка от тях с 'x'. 0:03:03.820,0:03:10.873 AB = x, BC = x, CD = x, DA = x 0:03:10.873,0:03:15.303 Всички страни са равни помежду си, [br]имат равни дължини 'x'. 0:03:15.303,0:03:19.573 Ако искаме да изчислим обиколката,[br]тя би била х + х + х + х. 0:03:19.573,0:03:30.670 х + х + х + х = 4х = 36,[br]това ни е дадено в условието. 0:03:30.670,0:03:35.200 За да решим това 4 по нещо = 36 0:03:35.200,0:03:42.890 разделяме 2-те страни на уравнението[br]на 4 и получаваме х = 9. 0:03:42.890,0:03:46.780 Този квадрат има страни 9 на 9. 0:03:46.780,0:03:50.800 Това е 9, това е 9,[br]и височината тук е също 9. 0:03:50.800,0:03:53.190 Така че това е обиколката. 0:03:53.190,0:03:58.877 Лицето измерва колко място [br]заема определено нещо. 0:03:58.877,0:04:06.267 Да приемем, че имаме квадрат 1 на 1, 0:04:06.267,0:04:10.420 за правоъгълника трябва да уточним[br]2 величини, тъй като 0:04:10.420,0:04:13.323 другите 2 ще са същите, затова да приемем, че 0:04:13.323,0:04:16.463 имаме един правоъгълник с размери 5 на 7. 0:04:16.463,0:04:20.743 Тази страна е 5 и тази страна е 5,[br]тази страна е 7 и тази страна е 7. 0:04:20.743,0:04:32.150 За квадрата можем да кажем, че е 1 на 1,[br]тъй като всички страни са 1, 0:04:32.150,0:04:35.290 Това е квадрат 1 на 1. 0:04:35.290,0:04:42.393 Можеш да изразиш лицето на която и да е фигура, като[br]колко 1х1 квадрата могат да се поберат в нея. 0:04:42.393,0:04:47.160 Ако се върнем към правоъгълника и[br]искаме да намерим 0:04:47.160,0:04:49.533 колко е неговото лице, 0:04:49.533,0:04:52.533 означаваме лицето по този начин: 0:04:52.533,0:04:59.943 слагам в скоби правоъгълника ABCD, 0:04:59.943,0:05:04.470 е равно на броя 1х1 квадрати, които [br]могат да се поберат в него. 0:05:04.470,0:05:09.400 Нека опитаме да го направим,[br]можем да го направим по-бързо, 0:05:09.400,0:05:12.400 но нека го направим едно по едно. 0:05:12.400,0:05:15.040 Имаме 5 квадрата с размери 1х1[br]в тази посока 0:05:15.040,0:05:16.373 и 7 в тази посока. 0:05:16.373,0:05:18.383 Опитвам се да го начертая по най-добрия начин, [br]на който съм способен. 0:05:18.383,0:05:29.163 Това са 1, 2, 3, 4, 5, 6 и 7. 0:05:29.163,0:05:40.600 На по-дългата страна на провоъгълника можем да поместим 7 такива квадрата, 0:05:40.600,0:05:56.400 а на по-късата са 5. [br]Това са 5 реда по 1 на всеки = 5, 0:05:56.400,0:06:01.667 а на другата 7 реда по 1 всеки = 7. 0:06:01.667,0:06:03.657 Това са 5 реда по 7. 0:06:03.657,0:06:05.997 Всъщност, можем направо да преброим[br]квадратите, които поместихме, 0:06:05.997,0:06:08.917 или да ги умножим. 0:06:08.917,0:06:22.173 Имаме 5 реда и 7 колони, [br]значи 35 квадрата. 0:06:22.173,0:06:27.577 Това всъщност е и [br]лицето на правоъгълника, то е 35. 0:06:27.577,0:06:31.333 Общоприетият начин е да вземем [br]дължината на едната страна 0:06:31.333,0:06:33.933 и да я умножим по дължината на другата. 0:06:33.933,0:06:44.867 Ако имаме правоъгълник с размери 1/2 на 2, 0:06:44.867,0:06:51.000 можем просто да ги умножим, 1/2 х 2 = 1. 0:06:51.000,0:07:00.953 При тази ситуация мога да побера само половин квадрат с размери 1 на 1 в тази страна. 0:07:00.953,0:07:04.333 Ако искам да побера цял 1 на 1 квадрат,[br]щеше да изглежда така. 0:07:04.333,0:07:06.563 Но тук се събира само половин квадрат 1 на 1. 0:07:06.563,0:07:10.333 Ако добавя още една половинка тук, 0:07:10.333,0:07:13.703 получавам цял квадрат 1 на 1. 0:07:13.703,0:07:16.460 А сега, какво значи това за лицето на квадрата? 0:07:16.460,0:07:20.060 Квадратът е специален случай, тъй като дължината и ширината му са еднакви. 0:07:20.060,0:07:25.680 Нека да начертая тук един квадрат. 0:07:25.680,0:07:32.007 Нека обозначим нашия квадрат с XYZS. 0:07:32.007,0:07:34.887 Ние искаме да изчислим неговото лице 0:07:34.887,0:07:38.137 и знаем, че страната му е 2[br]така че XS = 2 . 0:07:38.137,0:07:41.447 Искам да намеря лицето на XYZS. 0:07:41.447,0:07:48.867 Отново ще използвам тези скоби, [br]за да означа лицето. 0:07:48.867,0:07:52.267 Всички знаем, че страните са му еднакви, тъй като 0:07:52.267,0:07:55.350 той е специален случай и ако едната страна е 2, [br]то всички са толкова. 0:07:55.350,0:07:57.020 Това е същият случай. 0:07:57.020,0:08:01.217 Тук имаме 2 и тук 2, [br]значи ще умножим 2 по 2, което е 4. 0:08:01.217,0:08:04.327 което е 2 на квадрат, ето откъде идва този израз, 0:08:04.327,0:08:07.327 затова казваме, че повдигаме нещо на квадрат. 0:08:07.327,0:08:08.697 Това е 2 по 2, което е същото[br]като 2 на квадрат. [br] 0:08:08.697,0:08:16.187 Което е равно на 4. 0:08:16.187,0:08:21.200 И лесно можеш да видиш, че може да побереш[br]4 квадрата с размери 1х1. 0:08:20.681,0:08:24.681 в този квадрат със страни 2 на 2.