Laten we starten met drie punten: Punt A, Punt B en Punt C
als we deze 3 punten met elkaar verbinden,
en ze liggen niet co-linear, ze liggen niet op een en dezelfde lijn,
Als ik ze verbind door lijnen te trekken, dan krijg ik een driehoek.
Ik denk wel dat je bekend ben met het idee van een driehoek.
wat ik in deze video wil bewijzen is
dat de hoeken in een driehoek bij elkaar opgeteld 180 graden is.
Als het gemeten deel van dit hoek "a" is, dan is deze hoek maat "b" en dan is de maat van deze hoek "c"
Ik gebruik kleine letters a, b en c
weet je wat, ik zal ze niet gebruiken, want ik heb al een grote A, B en een C.
Dit is x, y en z, ik zal bewijzen dat
x + y + z = (gelijk is aan) 180 graden
Ik zal even wat ruimte vrij maken.
Wat ik ga doen is, ik start
door een rechte lijn te trekken dat evenredig is aan
vlak BC, maar het gaat door punt A.
Zo'n rechte lijn ziet er als volgt uit.
Ik zal deze rechte lijn "L" noemen en we gaan door
van vlak BC maak ik een rechte lijn
De lijnen zijn echt evenredig, dus Lijn L is gelijk aan
en de reden waarom ik dit doe is dat plotseling
de twee andere rechte lijnen van een driehoeken zijn overeenkomstig
De rechte lijn AB & AC kruisen deze twee evenredige rechte lijnen.
Als je nadenkt over hoe je uit het niets een evenredige rechte lijn moet maken
dan kun je altijd een lijn pakken.
Vind een punt van dat lijn waar een andere evenredige lijn
doorheen loopt
Wat ik hier wil doen is dat je nadenkt over
vlak of lijn AB & AC als twee evenredige lijnen naast elkaar.
Dat is lijn AB en dan heb ik hier AC
We gaan nu nadenken over de totale hoeveelheid graden van de hoeken.
binnenin een driehoek. Laten we zeggen de maat van deze hoek
hier is "X", we weten van de evenredige lijnen
dat deze hoek tussen de andere hoek overeenkomt
en een evenredige lijn loopt met
dezelfde hoek tussen de overeenkomstige andere rechte lijn.
We weten dat deze zelfde hoek
gelijk is aan "X". Als dit 30 graden is, dan is dit ook 30 graden.
We weten ook dat als dat "X" is, de verticale hoek
ook "X" moet zijn. Dit word dus ook "X"
Laten we nadenken over een andere hoek in de driehoek
De maat van deze hoek is "Y"
Als dit dus "Y" is? Wat is dan de gehele hoek?
Dit zal zijn X + Y. Als deze gehele hoek X + Y is,
heeft X = Y dan niet dezelfde hoeken?
Het komt overeen met deze hoek hier.
Deze hoek is ook X + Y
Als deze hoek x + y is wat is
deze hoek hier? Deze hoek vult aan tot
deze paarse hoek. Dus x + y + ? = 180 graden.
Dus, "?" hoek is 180 - x - y.
Gegeven hoe we deze drie hoeken hebben opgezet, laten we het daarbij optellen.
We hebben x + y + 180 - x - y = 180 graden
We hebben dus bewezen aan onszelf dat de
som van alle hoeken van elke driehoek gelijk is aan 180 graden.