1 00:00:09,000 --> 00:00:10,000 2 00:00:10,000 --> 00:00:13,000 Esta apresentação é disponibilizada pelo centro Standford para desenvolvimento 3 00:00:13,000 --> 00:00:20,000 profissional 4 00:00:23,000 --> 00:00:26,000 Ok. Bom dia e bem vindos de volta 5 00:00:26,000 --> 00:00:30,000 a terceira palestra para esta classe. Então, 6 00:00:30,000 --> 00:00:33,000 aqui está o que quero fazer hoje 7 00:00:33,000 --> 00:00:34,000 E... em alguns dos 8 00:00:34,000 --> 00:00:37,000 tópicos que eu irei fazer hoje podem parecer um pouco que eu esteja meio que, pulando 9 00:00:37,000 --> 00:00:41,000 de um tópico a outro, mas aqui está, mais ou menos, o roteiro para hoje e o 10 00:00:41,000 --> 00:00:44,000 fluxo lógico de idéias. 11 00:00:44,000 --> 00:00:48,000 Na última palestra falamos sobre regressão linear e hoje eu quero falar sobre 12 00:00:48,000 --> 00:00:52,000 um tipo de adaptação dela chamada (locally weighted regression). É um algoritmo 13 00:00:52,000 --> 00:00:57,000 muito popular, na verdade este provavelmente é um dos algoritmos de aprendizado de máquina 14 00:00:57,000 --> 00:00:59,000 favoritos de um de meus antigos mentores. Então 15 00:00:59,000 --> 00:01:02,000 iremos falar sobre uma provável segunda interpretação da regressão linear 16 00:01:02,000 --> 00:01:07,000 E usá-la para nos mover ao nosso primeiro algoritmo de classificação 17 00:01:07,000 --> 00:01:08,000 que é regressão logística 18 00:01:08,000 --> 00:01:12,000 Tomaremos uma pequena digressão para falar sobre uma coisa chamada algoritmo 'perceptron' 19 00:01:12,000 --> 00:01:15,000 que é algo que nós iremos voltar a discutir, novamente, mais tarde neste trimestre 20 00:01:15,000 --> 00:01:17,000 e 21 00:01:17,000 --> 00:01:21,000 Se o tempo permitir, eu espero chegar ao método de Newton, o qual é um algoritmo para 22 00:01:21,000 --> 00:01:23,000 ajustar modelos de 23 00:01:23,000 --> 00:01:24,000 regressão logística. 24 00:01:24,000 --> 00:01:30,000 Então, recapitulando onde nós paramos na palestra anterior, 25 00:01:30,000 --> 00:01:33,000 lembrem-se que a notação que eu defini foi que 26 00:01:33,000 --> 00:01:35,000 eu usei isto 27 00:01:35,000 --> 00:01:37,000 X, i sobrescrito 28 00:01:37,000 --> 00:01:44,000 Y, i sobrescrito, para denotaro exemplo de treinamento i 29 00:01:47,000 --> 00:01:49,000 e 30 00:01:49,000 --> 00:01:51,000 quando estávamos falando sobre regressão linear 31 00:01:51,000 --> 00:01:52,000 32 00:01:52,000 --> 00:01:54,000 ou método dos mínimos quadrados 33 00:01:54,000 --> 00:01:56,000 Nós usamos isto para denotar 34 00:01:56,000 --> 00:01:58,000 o valor predito resultado 35 00:01:58,000 --> 00:02:00,000 da aplicação de minha "hipótese" H 36 00:02:00,000 --> 00:02:02,000 na entrada Xi 37 00:02:02,000 --> 00:02:04,000 E minha hipótese 38 00:02:04,000 --> 00:02:06,000 era parametrizada pelo 39 00:02:06,000 --> 00:02:08,000 vetor de parâmetros theta 40 00:02:08,000 --> 00:02:13,000 E então dizemos que isto era igual à soma de j = 0 á n 41 00:02:13,000 --> 00:02:15,000 da multiplicação de theta j por xj 42 00:02:15,000 --> 00:02:19,000 i superscrito 43 00:02:19,000 --> 00:02:22,000 que é produto de theta transposto por X 44 00:02:22,000 --> 00:02:25,000 E temos a convenção que X 45 00:02:25,000 --> 00:02:29,000 zero subscrito, é igual a 1, Então isto conta para a intersecção no nosso 46 00:02:29,000 --> 00:02:31,000 modelo de regressão linear 47 00:02:31,000 --> 00:02:33,000 E o n minúsculo aqui 48 00:02:33,000 --> 00:02:36,000 era a notação que eu estava usando para 49 00:02:36,000 --> 00:02:40,000 o número de 'features' no meu conjunto de Treinamento. Ok? Então 50 00:02:40,000 --> 00:02:43,000 no exemplo quando tentamos predizer o preço de casas, nós tínhamos duas 'features, o tamanho 51 00:02:43,000 --> 00:02:45,000 da casa e o número de quartos 52 00:02:45,000 --> 00:02:50,000 Nós tínhamos duas features, portanto, n-zinho era igual a 2 53 00:02:50,000 --> 00:02:51,000 54 00:02:51,000 --> 00:02:54,000 Então, apenas para 55 00:02:54,000 --> 00:02:57,000 terminar de recapitular a palestra anterior 56 00:02:57,000 --> 00:03:01,000 nós definimos esta função de custo quadrática J de theta 57 00:03:01,000 --> 00:03:05,000 era igual a 1/2, soma de i = 1 à m .... 58 00:03:05,000 --> 00:03:07,000 ... 59 00:03:07,000 --> 00:03:10,000 ... 60 00:03:10,000 --> 00:03:12,000 ao quadrdado 61 00:03:12,000 --> 00:03:16,000 onde esta é a soma sobre nossos m exemplos de treinamento e meu conjunto de treinamento. Então 62 00:03:16,000 --> 00:03:17,000 m minúsculo 63 00:03:17,000 --> 00:03:21,000 era a notação que eu estava usando para denotar o número de exemplos de treinamento que eu tinha 64 00:03:21,000 --> 00:03:23,000 e o tamanho do meu conjunto de treinamento 65 00:03:23,000 --> 00:03:25,000 E no fim da última palestra 66 00:03:25,000 --> 00:03:26,000 nós derivamos 67 00:03:26,000 --> 00:03:30,000 o valor de theta que minimiza isto na forma fechada, que era X 68 00:03:30,000 --> 00:03:32,000 transposto X 69 00:03:32,000 --> 00:03:35,000 inverso X transposto 70 00:03:35,000 --> 00:03:38,000 Y. Ok? 71 00:03:38,000 --> 00:03:42,000 Então 72 00:03:42,000 --> 00:03:46,000 A medida que continuarmos a palestra de hoje, Eu continuarei a usar esta anotação e, novamente, 73 00:03:46,000 --> 00:03:50,000 Eu percebo que é uma grande quantidade de notações para todos lembrarem, 74 00:03:50,000 --> 00:03:55,000 Então se durante esta palestra você se esquecer - se você tiver problemas para se lembrar 75 00:03:55,000 --> 00:04:02,000 o que m minúsculo é ou o que n minúsculo é ou qualquer coisa, por favor levante sua mão e pergunte. 76 00:04:04,000 --> 00:04:07,000 Quando nós falamos sobre regressão linear da última vez 77 00:04:07,000 --> 00:04:10,000 nós usamos duas features. Uma delas era 78 00:04:10,000 --> 00:04:14,000 o tamanho das casas em 'pés' quadrados, Então a área de convivência da casa 79 00:04:14,000 --> 00:04:18,000 e a outra feature era o número de quartos na casa 80 00:04:18,000 --> 00:04:22,000 Geralmente, nós aplicamos um algoritmo de aprendizado de máquina a um problema que 81 00:04:22,000 --> 00:04:23,000 importa para você 82 00:04:23,000 --> 00:04:28,000 A escolha de features irá depender muito de você, certo? 83 00:04:28,000 --> 00:04:32,000 E o modo como você escolhe suas features para dar ao algoritmo, frequentemente irá 84 00:04:32,000 --> 00:04:34,000 causar um grande impacto na maneira como ele funciona. 85 00:04:34,000 --> 00:04:40,000 Então, por exemplo 86 00:04:40,000 --> 00:04:44,000 a escolha que nós fizemos da última vez era x1 igual ao tamanho. 87 00:04:44,000 --> 00:04:47,000 e vamos deixar esta idéia de feature do número de quartos por enquanto. Vamos dizer que nós não temos dados 88 00:04:47,000 --> 00:04:50,000 que nos digam quantos quartos há nestas casas 89 00:04:50,000 --> 00:04:54,000 Uma coisa que você poderia fazer é definir - oh, vamos 90 00:04:54,000 --> 00:04:56,000 desenhar isto 91 00:04:56,000 --> 00:05:03,000 E então... 92 00:05:04,000 --> 00:05:07,000 Então digamos que isto era o tamanho da casa e que este é o preço da casa, então 93 00:05:07,000 --> 00:05:10,000 Se você usar 94 00:05:10,000 --> 00:05:14,000 isto como uma feature, talvez você tenha theta0 mais theta1 95 00:05:14,000 --> 00:05:19,000 x1, é um tipo de, modelo linear. 96 00:05:19,000 --> 00:05:21,000 Se você escolher - deixe-me apenas copiar 97 00:05:21,000 --> 00:05:26,000 os mesmos dados de novo, certo? 98 00:05:26,000 --> 00:05:30,000 Você pode definir o conjunto de features onde x1 é igual ao tamanho da casa 99 00:05:30,000 --> 00:05:34,000 e x2 é 100 00:05:34,000 --> 00:05:36,000 o quadrado 101 00:05:36,000 --> 00:05:37,000 do tamanho 102 00:05:37,000 --> 00:05:38,000 da casa, ok? 103 00:05:38,000 --> 00:05:43,000 Então x1 é o tamanho da casa em, digamos, uma medida quadrada (e.g. m²) e x2 é 104 00:05:43,000 --> 00:05:45,000 qualquer medida quadrada da casa e apenas 105 00:05:45,000 --> 00:05:49,000 eleve esse número ao quadrado, e isto seria outro modo de escolher uma feature 106 00:05:49,000 --> 00:05:51,000 e se você fizer isto então 107 00:05:51,000 --> 00:05:55,000 o mesmo algoritmo irá se ajustar 108 00:05:55,000 --> 00:05:59,000 a uma função quadrática para você 109 00:05:59,000 --> 00:06:01,000 theta2, x1 ao quadrado 110 00:06:01,000 --> 00:06:06,000 ok? Porque isto 111 00:06:06,000 --> 00:06:09,000 na verdade é x2. E 112 00:06:09,000 --> 00:06:12,000 dependendo da aparência dos dados, talvez isto se ajuste 113 00:06:12,000 --> 00:06:16,000 levemente melhor aos dados. Na verdade você pode levar isto 114 00:06:16,000 --> 00:06:23,000 ainda mais adiante 115 00:06:25,000 --> 00:06:26,000 O que é - vamos ver 116 00:06:26,000 --> 00:06:30,000 Eu tenho sete exemplos de treinamento aqui, então na verdade você pode 117 00:06:30,000 --> 00:06:34,000 ,talvez, ajustar até um polinômio de grau 6. Você poderia ajustar um modelo 118 00:06:34,000 --> 00:06:35,000 theta0 mais 119 00:06:35,000 --> 00:06:38,000 theta1, x1 mais theta2 120 00:06:38,000 --> 00:06:42,000 x ao quadrado mais etc... 121 00:06:42,000 --> 00:06:48,000 até theta6. X à 122 00:06:48,000 --> 00:06:52,000 potência de 6 e theta é o polinômio 123 00:06:52,000 --> 00:06:55,000 para estes sete pontos de dados 124 00:06:55,000 --> 00:06:58,000 E se você fizer isto, você vai descobrir que 125 00:06:58,000 --> 00:07:01,000 você criou um modelo que se ajusta exatamente aos seus dados. É aí que, eu acho, 126 00:07:01,000 --> 00:07:06,000 neste exemplo que eu desenhei, nós temos 7 pontos de dados, então se você ajusta um 127 00:07:06,000 --> 00:07:08,000 modelo de polinômio de grau 6, você pode, meio que, ajustar 128 00:07:08,000 --> 00:07:11,000 uma linha que passa por estes sete pontos perfeitamente 129 00:07:11,000 --> 00:07:14,000 e você provavelmente encontra uma curva que 130 00:07:14,000 --> 00:07:17,000 você iria conseguir algo 131 00:07:17,000 --> 00:07:20,000 parecido com isto 132 00:07:20,000 --> 00:07:23,000 E por um lado, é um ótimo modelo no sentido que ele 133 00:07:23,000 --> 00:07:25,000 se ajusta perfeitamente aos dados de treinamento 134 00:07:25,000 --> 00:07:26,000 Mas por outro, este provavelmente não é 135 00:07:26,000 --> 00:07:28,000 um bom modelo no sentido que 136 00:07:28,000 --> 00:07:31,000 nenhum de nós, realmente pensa que esta seja uma boa predição dos preços 137 00:07:31,000 --> 00:07:36,000 das casas, como uma função do tamanho da casa, certo? Então 138 00:07:36,000 --> 00:07:39,000 Na verdade, nós voltaremos a isto mais tarde. Acontece que 139 00:07:39,000 --> 00:07:41,000 nos modelos que nós temos aqui; 140 00:07:41,000 --> 00:07:45,000 Eu sinto que talvez o modelo quadrático se ajuste melhor 141 00:07:45,000 --> 00:07:46,000 Enquanto que 142 00:07:46,000 --> 00:07:47,000 143 00:07:47,000 --> 00:07:52,000 O modelo linear parece que possui um pouco de componente quadrático nestes 144 00:07:52,000 --> 00:07:52,000 dados 145 00:07:52,000 --> 00:07:56,000 que a função linear não está capturando 146 00:07:56,000 --> 00:07:59,000 Então nós iremos voltar a isto um pouco mais tarde e falar sobre os problemas 147 00:07:59,000 --> 00:08:03,000 associados com ajuste de modelos que são, ou muito simples, usam dos pequenos 148 00:08:03,000 --> 00:08:04,000 conjuntos de features, ou 149 00:08:04,000 --> 00:08:08,000 em modelos que são muito complexos e talvez 150 00:08:08,000 --> 00:08:11,000 usem um conjunto muito grande de featurees 151 00:08:11,000 --> 00:08:12,000 apenas para dar-lhes 152 00:08:12,000 --> 00:08:13,000 um nome, 153 00:08:13,000 --> 00:08:14,000 nós chamamos isto de 154 00:08:14,000 --> 00:08:19,000 o problema de 'underfitting' (subajuste) 155 00:08:19,000 --> 00:08:23,000 e, muito informalmente, isto se refere a uma configuração onde 156 00:08:23,000 --> 00:08:26,000 existem padrões óbvios que - onde há padrões nos dados que 157 00:08:26,000 --> 00:08:28,000 o algoritmo está falhando a se ajustar 158 00:08:28,000 --> 00:08:32,000 E a este problema aqui nós nos referimos como sendo 159 00:08:32,000 --> 00:08:34,000 overfitting (sobreajuste) 160 00:08:34,000 --> 00:08:36,000 e, novamente, muito informalmente, 161 00:08:36,000 --> 00:08:41,000 isto acontece quando o algoritmo está ajustando às Idiossincrasias de um conjunto de dados específicos 162 00:08:41,000 --> 00:08:43,000 certo? Isto acontece apenas porque 163 00:08:43,000 --> 00:08:48,000 das sete casas que tiramos amostras em Portland, ou de onde quer que você esteja coletando dados, 164 00:08:48,000 --> 00:08:51,000 esta casa acaba por ser um pouco mais cara, esta outro um pouco menos 165 00:08:51,000 --> 00:08:54,000 cara, e por 166 00:08:54,000 --> 00:08:57,000 ajustar seis ao polinômio nós, meio que, ajustamos características individuais 167 00:08:57,000 --> 00:08:58,000 deste conjunto de dados, 168 00:08:58,000 --> 00:09:01,000 Ao invés das verdadeiras tendências subjacentes 169 00:09:01,000 --> 00:09:04,000 de como o preço das casas varia como uma função do tamanho da casa. Ok? 170 00:09:04,000 --> 00:09:08,000 Então, estes são dois problemas muito diferentes. Nós iremos definí-los mais formalmente mais tarde. 171 00:09:08,000 --> 00:09:12,000 e falar sobre como atacar cada um destes problemas. 172 00:09:12,000 --> 00:09:13,000 Mas por agora eu 173 00:09:13,000 --> 00:09:20,000 espero apreciar que há este assunto de seleção de features. 174 00:09:22,000 --> 00:09:23,000 Então se você quiser apenas 175 00:09:23,000 --> 00:09:26,000 ensinar-nos os problemas de aprendizado, existem poucas maneiras de fazê-lo 176 00:09:26,000 --> 00:09:27,000 Então 177 00:09:27,000 --> 00:09:29,000 Nós iremos falar sobre 178 00:09:29,000 --> 00:09:32,000 algoritmos de seleção de features, mais tarde neste trimestre também. Então algoritmos automáticos 179 00:09:32,000 --> 00:09:33,000 para escolher 180 00:09:33,000 --> 00:09:35,000 que features usar em um 181 00:09:35,000 --> 00:09:37,000 problema de regressão como este 182 00:09:37,000 --> 00:09:41,000 O que eu quero fazer hoje é falar sobre uma classe de algoritmos 183 00:09:41,000 --> 00:09:44,000 chamados de algoritmos de aprendizado não paramétricos que irão ajudar 184 00:09:44,000 --> 00:09:49,000 de alguma forma, a aliviar a necessidade de você escolher features muito cuidadosamente. Ok? 185 00:09:49,000 --> 00:09:56,000 E isto nos leva a nossa discussão sobre (locally weighted regression). 186 00:09:56,000 --> 00:10:03,000 E só pra definir o termo 187 00:10:12,000 --> 00:10:16,000 A regressão linear, da medida que definimos até agora, é um exemplo de um algoritmo de aprendizado paramétrico 188 00:10:16,000 --> 00:10:17,000 e 189 00:10:17,000 --> 00:10:19,000 algoritmo de aprendizado paramétrico 190 00:10:19,000 --> 00:10:21,000 da maneira como é definido é 191 00:10:21,000 --> 00:10:24,000 um algoritmo que tem um número fixo de parâmetros 192 00:10:24,000 --> 00:10:27,000 Que se ajustam aos dados, Então 193 00:10:27,000 --> 00:10:28,000 Na regressão linear 194 00:10:28,000 --> 00:10:32,000 nós temos um conjunto fixo de parâmetros theta. Que deve 195 00:10:32,000 --> 00:10:39,000 se ajustar aos dados 196 00:10:39,000 --> 00:10:46,000 Em contraste, o que eu vou falar sobre agora é nosso primeiro algoritmo de aprendizado não-paramétrico. 197 00:10:58,000 --> 00:11:02,000 A definição formal, a qual não é muito intuitiva, eu substitui por uma 198 00:11:02,000 --> 00:11:04,000 segunda, digamos, mais 199 00:11:04,000 --> 00:11:06,000 intuitiva. 200 00:11:06,000 --> 00:11:10,000 O tipo de definição formal do algoritmo de aprendizado não paramétrico é de um algoritmo 201 00:11:10,000 --> 00:11:17,000 onde o número de paramâmetros 202 00:11:18,000 --> 00:11:22,000 cresce 203 00:11:22,000 --> 00:11:25,000 com M, com o tramanho do conjunto de treinamento. E geralmente é 204 00:11:25,000 --> 00:11:30,000 definido como um número de parâmetros cresce linearmente com o tamanho do conjunto de treinamento. 205 00:11:30,000 --> 00:11:32,000 Esta é a definição formal 206 00:11:32,000 --> 00:11:33,000 Uma 207 00:11:33,000 --> 00:11:36,000 definição levemente menos formal é que 208 00:11:36,000 --> 00:11:37,000 A quantidade de coisa que seu algoritmo de aprendizado precisa 209 00:11:37,000 --> 00:11:40,000 para se manter funcionando 210 00:11:40,000 --> 00:11:44,000 irá crescer linearmente com o conjunto de treinamento ou, outra forma de dizer isto, é um 211 00:11:44,000 --> 00:11:45,000 algoritmo que 212 00:11:45,000 --> 00:11:51,000 Nós iremos precisar manter o conjunto de treinamento inteiro, mesmo depois do aprendizado. Ok? Então 213 00:11:51,000 --> 00:11:53,000 Não se preocupe demais sobre esta definição. Mas 214 00:11:53,000 --> 00:11:55,000 O que eu quero agora é 215 00:11:55,000 --> 00:11:58,000 descrever um algoritmo de aprendizado não-paramétrico específico 216 00:11:58,000 --> 00:12:05,000 chamado "locally weighted regression" 217 00:12:09,000 --> 00:12:16,000 O qual também recebe um par de outros nomes 218 00:12:17,000 --> 00:12:20,000 O qual também é nomeado como Loess, por razões meio históricas. Loess 219 00:12:20,000 --> 00:12:23,000 Geralmente é soletrado L-O-E-S-S 220 00:12:23,000 --> 00:12:24,000 algumas vezes falando assim, 221 00:12:24,000 --> 00:12:27,000 também. Eu só chamo de "locally weighted regression" 222 00:12:27,000 --> 00:12:34,000 Então aqui está 223 00:12:34,000 --> 00:12:37,000 a idéia. Este será um algoritmo que vai nos permitir 224 00:12:37,000 --> 00:12:42,000 nos preocupar um pouco menos sobre ter que escolher features muito cuidadosamente. 225 00:12:42,000 --> 00:12:48,000 Então 226 00:12:48,000 --> 00:12:55,000 Para meu exemplo de motivação vamos dizer que eu 227 00:12:55,000 --> 00:12:59,000 tenho um 228 00:12:59,000 --> 00:13:00,000 conjunto de terinamento que parece com este, ok? 229 00:13:00,000 --> 00:13:04,000 Então isto é X e isto é Y 230 00:13:04,000 --> 00:13:07,000 Se você executar 231 00:13:07,000 --> 00:13:10,000 regressão linear nisto e você ajustar talvez, uma função linear a isto 232 00:13:10,000 --> 00:13:12,000 você acaba com uma 233 00:13:12,000 --> 00:13:13,000 mais ou menos 234 00:13:13,000 --> 00:13:16,000 linha reta, a qual não é um ajuste muito bom para esses dados. 235 00:13:16,000 --> 00:13:19,000 Você ainda pode sentar e encarar isto e tentar decidir que features são usadas certo 236 00:13:19,000 --> 00:13:22,000 Então talvez você queira jogar uma função quadrática 237 00:13:22,000 --> 00:13:25,000 Mas ela não é realmente quadrática também. Então talvez você queira 238 00:13:25,000 --> 00:13:27,000 modelar isto como um X 239 00:13:27,000 --> 00:13:31,000 mais X ao quadrado mas talvez alguma função do seno de X ou algo do tipo 240 00:13:31,000 --> 00:13:33,000 Na verdade você pode sentar e perder tempo com features 241 00:13:33,000 --> 00:13:37,000 E depois de um tempo você provavelmente virá com um conjunto de features cujo modelo está 242 00:13:37,000 --> 00:13:39,000 ok, mas vamos falar de um algoritmo que 243 00:13:39,000 --> 00:13:46,000 você pode usar sem necessidade de fazer isso 244 00:13:50,000 --> 00:13:52,000 Então 245 00:13:52,000 --> 00:13:54,000 Se - bem 246 00:13:54,000 --> 00:13:56,000 suponha que você quer avaliar 247 00:13:56,000 --> 00:13:59,000 sua hipótese H 248 00:13:59,000 --> 00:14:03,000 em um certo ponto. 249 00:14:03,000 --> 00:14:06,000 Com um certo ponto de requisição em X. ok? e 250 00:14:06,000 --> 00:14:07,000 vamos dizer que 251 00:14:07,000 --> 00:14:10,000 você quer saber qual o valor predito de 252 00:14:10,000 --> 00:14:11,000 Y 253 00:14:11,000 --> 00:14:16,000 nesta posição de X, certo? Então 254 00:14:16,000 --> 00:14:18,000 para a regressão linear 255 00:14:18,000 --> 00:14:22,000 O que nós estamos fazemos era ajustar 256 00:14:22,000 --> 00:14:25,000 theta 257 00:14:25,000 --> 00:14:28,000 para minimizar 258 00:14:28,000 --> 00:14:30,000 a soma sobre i 259 00:14:30,000 --> 00:14:34,000 Yi menos theta, transposto Xi 260 00:14:34,000 --> 00:14:38,000 ao quadrado e retornando theta 261 00:14:38,000 --> 00:14:41,000 transposto X. Ok? 262 00:14:41,000 --> 00:14:46,000 Então esta era regressão linear 263 00:14:46,000 --> 00:14:49,000 Em contraste, em "locally weighted linear regression" você irá fazer as coisas levemente 264 00:14:49,000 --> 00:14:51,000 diferente. ok? 265 00:14:51,000 --> 00:14:54,000 vamos olhar para este ponto X 266 00:14:54,000 --> 00:14:58,000 e então eu irei olhar no meu conjunto de dados e levar em consideração 267 00:14:58,000 --> 00:15:03,000 apenas o conjunto de pontos, meio que, em uma pequena vizinhança de X. Ok? 268 00:15:03,000 --> 00:15:07,000 Então nós iremos olhar onde Eu quero avaliar minha hipótese. Eu vou olhar 269 00:15:07,000 --> 00:15:10,000 apenas a vizinhança 270 00:15:10,000 --> 00:15:13,000 deste ponto. Onde eu quero avaliar minha hipótese 271 00:15:13,000 --> 00:15:16,000 E então eu vou pegar, 272 00:15:16,000 --> 00:15:19,000 digamos, apenas estes poucos pontos 273 00:15:19,000 --> 00:15:21,000 e Irei 274 00:15:21,000 --> 00:15:22,000 aplicar regressão linear 275 00:15:22,000 --> 00:15:26,000 para ajustar uma linha reta apenas para este subcojunto dos dados, ok? Eu 276 00:15:26,000 --> 00:15:29,000 irei usar este sub-termo subconjunto onde nós iremos voltar novamente 277 00:15:29,000 --> 00:15:32,000 Então nós temos este conjunto de dados e Eu ajustei uma linha reta 278 00:15:32,000 --> 00:15:36,000 a ele e talvez eu tenha uma linha como esta 279 00:15:36,000 --> 00:15:40,000 e O que eu irei fazer então é 280 00:15:40,000 --> 00:15:45,000 avaliar este valor particular na linha reta 281 00:15:45,000 --> 00:15:47,000 e este será o valor que eu retorno para meu algoritmo 282 00:15:47,000 --> 00:15:50,000 Eu acho que isto seria o valor predito 283 00:15:50,000 --> 00:15:53,000 para 284 00:15:53,000 --> 00:15:57,000 Isto seria o valor que minha hipótese retornaria 285 00:15:57,000 --> 00:16:04,000 em "locally weighted regression" ok? Então 286 00:16:05,000 --> 00:16:10,000 nós iremos seguir em frente. Deixe me continuar e formalizar isto 287 00:16:10,000 --> 00:16:15,000 288 00:16:15,000 --> 00:16:18,000 289 00:16:18,000 --> 00:16:25,000 290 00:16:27,000 --> 00:16:32,000 291 00:16:32,000 --> 00:16:36,000 292 00:16:36,000 --> 00:16:37,000 293 00:16:37,000 --> 00:16:41,000 294 00:16:41,000 --> 00:16:42,000 295 00:16:42,000 --> 00:16:45,000 296 00:16:45,000 --> 00:16:49,000 297 00:16:49,000 --> 00:16:54,000 298 00:16:54,000 --> 00:16:57,000 299 00:16:57,000 --> 00:17:04,000 300 00:17:06,000 --> 00:17:10,000 301 00:17:10,000 --> 00:17:14,000 302 00:17:14,000 --> 00:17:15,000 303 00:17:15,000 --> 00:17:19,000 304 00:17:19,000 --> 00:17:21,000 305 00:17:21,000 --> 00:17:25,000 306 00:17:25,000 --> 00:17:27,000 307 00:17:27,000 --> 00:17:30,000 308 00:17:30,000 --> 00:17:31,000 309 00:17:31,000 --> 00:17:34,000 310 00:17:34,000 --> 00:17:41,000 311 00:17:42,000 --> 00:17:43,000 312 00:17:43,000 --> 00:17:48,000 313 00:17:48,000 --> 00:17:51,000 314 00:17:51,000 --> 00:17:51,000 315 00:17:51,000 --> 00:17:56,000 316 00:17:56,000 --> 00:18:02,000 317 00:18:02,000 --> 00:18:05,000 318 00:18:05,000 --> 00:18:12,000 319 00:18:12,000 --> 00:18:13,000 320 00:18:13,000 --> 00:18:16,000 321 00:18:16,000 --> 00:18:21,000 322 00:18:21,000 --> 00:18:24,000 323 00:18:24,000 --> 00:18:28,000 324 00:18:28,000 --> 00:18:32,000 325 00:18:32,000 --> 00:18:35,000 326 00:18:35,000 --> 00:18:37,000 327 00:18:37,000 --> 00:18:39,000 328 00:18:39,000 --> 00:18:44,000 329 00:18:44,000 --> 00:18:47,000 330 00:18:47,000 --> 00:18:48,000 331 00:18:48,000 --> 00:18:54,000 332 00:18:54,000 --> 00:18:55,000 333 00:18:55,000 --> 00:18:58,000 334 00:18:58,000 --> 00:19:00,000 335 00:19:00,000 --> 00:19:02,000 336 00:19:02,000 --> 00:19:05,000 337 00:19:05,000 --> 00:19:06,000 338 00:19:06,000 --> 00:19:10,000 339 00:19:10,000 --> 00:19:17,000 340 00:19:17,000 --> 00:19:22,000 341 00:19:22,000 --> 00:19:26,000 342 00:19:26,000 --> 00:19:29,000 343 00:19:29,000 --> 00:19:33,000 344 00:19:33,000 --> 00:19:35,000 345 00:19:35,000 --> 00:19:37,000 346 00:19:37,000 --> 00:19:41,000 347 00:19:41,000 --> 00:19:42,000 348 00:19:42,000 --> 00:19:45,000 349 00:19:45,000 --> 00:19:47,000 350 00:19:47,000 --> 00:19:49,000 351 00:19:49,000 --> 00:19:51,000 352 00:19:51,000 --> 00:19:53,000 353 00:19:53,000 --> 00:19:55,000 354 00:19:55,000 --> 00:19:59,000 355 00:19:59,000 --> 00:20:02,000 356 00:20:02,000 --> 00:20:06,000 357 00:20:06,000 --> 00:20:07,000 358 00:20:07,000 --> 00:20:12,000 359 00:20:12,000 --> 00:20:13,000 360 00:20:13,000 --> 00:20:16,000 361 00:20:16,000 --> 00:20:21,000 362 00:20:21,000 --> 00:20:23,000 363 00:20:23,000 --> 00:20:28,000 364 00:20:28,000 --> 00:20:32,000 365 00:20:32,000 --> 00:20:33,000 366 00:20:33,000 --> 00:20:36,000 367 00:20:36,000 --> 00:20:39,000 368 00:20:39,000 --> 00:20:42,000 369 00:20:42,000 --> 00:20:44,000 370 00:20:44,000 --> 00:20:48,000 371 00:20:48,000 --> 00:20:50,000 372 00:20:50,000 --> 00:20:53,000 373 00:20:53,000 --> 00:20:54,000 374 00:20:54,000 --> 00:20:56,000 375 00:20:56,000 --> 00:20:58,000 376 00:20:58,000 --> 00:21:01,000 377 00:21:01,000 --> 00:21:04,000 378 00:21:04,000 --> 00:21:07,000 379 00:21:07,000 --> 00:21:10,000 380 00:21:10,000 --> 00:21:11,000 381 00:21:11,000 --> 00:21:15,000 382 00:21:15,000 --> 00:21:17,000 383 00:21:17,000 --> 00:21:21,000 384 00:21:21,000 --> 00:21:24,000 385 00:21:24,000 --> 00:21:27,000 386 00:21:27,000 --> 00:21:32,000 387 00:21:32,000 --> 00:21:33,000 388 00:21:33,000 --> 00:21:40,000 389 00:21:40,000 --> 00:21:47,000 390 00:21:47,000 --> 00:21:49,000 391 00:21:49,000 --> 00:21:53,000 392 00:21:53,000 --> 00:21:55,000 393 00:21:55,000 --> 00:21:57,000 394 00:21:57,000 --> 00:22:00,000 395 00:22:00,000 --> 00:22:04,000 396 00:22:04,000 --> 00:22:08,000 397 00:22:08,000 --> 00:22:09,000 398 00:22:09,000 --> 00:22:16,000 399 00:22:17,000 --> 00:22:21,000 400 00:22:21,000 --> 00:22:25,000 401 00:22:25,000 --> 00:22:27,000 402 00:22:27,000 --> 00:22:30,000 403 00:22:30,000 --> 00:22:32,000 404 00:22:32,000 --> 00:22:39,000 405 00:22:41,000 --> 00:22:44,000 406 00:22:44,000 --> 00:22:45,000 407 00:22:45,000 --> 00:22:46,000 408 00:22:46,000 --> 00:22:50,000 409 00:22:50,000 --> 00:22:51,000 410 00:22:51,000 --> 00:22:52,000 411 00:22:52,000 --> 00:22:55,000 412 00:22:55,000 --> 00:22:56,000 413 00:22:56,000 --> 00:22:58,000 414 00:22:58,000 --> 00:23:00,000 415 00:23:00,000 --> 00:23:04,000 416 00:23:04,000 --> 00:23:06,000 417 00:23:06,000 --> 00:23:08,000 418 00:23:08,000 --> 00:23:09,000 419 00:23:09,000 --> 00:23:13,000 420 00:23:13,000 --> 00:23:15,000 421 00:23:15,000 --> 00:23:17,000 422 00:23:17,000 --> 00:23:22,000 423 00:23:22,000 --> 00:23:25,000 424 00:23:25,000 --> 00:23:27,000 425 00:23:27,000 --> 00:23:29,000 426 00:23:29,000 --> 00:23:31,000 427 00:23:31,000 --> 00:23:37,000 428 00:23:37,000 --> 00:23:42,000 429 00:23:42,000 --> 00:23:43,000 430 00:23:43,000 --> 00:23:48,000 431 00:23:48,000 --> 00:23:49,000 432 00:23:49,000 --> 00:23:51,000 433 00:23:51,000 --> 00:23:55,000 434 00:23:55,000 --> 00:23:57,000 435 00:23:57,000 --> 00:23:59,000 436 00:23:59,000 --> 00:24:01,000 437 00:24:01,000 --> 00:24:04,000 438 00:24:04,000 --> 00:24:07,000 439 00:24:07,000 --> 00:24:10,000 440 00:24:10,000 --> 00:24:15,000 441 00:24:15,000 --> 00:24:16,000 442 00:24:16,000 --> 00:24:19,000 443 00:24:19,000 --> 00:24:20,000 444 00:24:20,000 --> 00:24:24,000 445 00:24:24,000 --> 00:24:29,000 446 00:24:29,000 --> 00:24:31,000 447 00:24:31,000 --> 00:24:37,000 448 00:24:37,000 --> 00:24:42,000 449 00:24:42,000 --> 00:24:44,000 450 00:24:44,000 --> 00:24:45,000 451 00:24:45,000 --> 00:24:49,000 452 00:24:49,000 --> 00:24:51,000 453 00:24:51,000 --> 00:24:52,000 454 00:24:52,000 --> 00:24:54,000 455 00:24:54,000 --> 00:24:58,000 456 00:24:58,000 --> 00:25:00,000 457 00:25:00,000 --> 00:25:01,000 458 00:25:01,000 --> 00:25:03,000 459 00:25:03,000 --> 00:25:07,000 460 00:25:07,000 --> 00:25:08,000 461 00:25:08,000 --> 00:25:13,000 462 00:25:13,000 --> 00:25:14,000 463 00:25:14,000 --> 00:25:18,000 464 00:25:18,000 --> 00:25:23,000 465 00:25:23,000 --> 00:25:24,000 466 00:25:24,000 --> 00:25:27,000 467 00:25:27,000 --> 00:25:32,000 468 00:25:32,000 --> 00:25:34,000 469 00:25:34,000 --> 00:25:37,000 470 00:25:37,000 --> 00:25:40,000 471 00:25:40,000 --> 00:25:45,000 472 00:25:45,000 --> 00:25:52,000 473 00:25:56,000 --> 00:25:58,000 474 00:25:58,000 --> 00:25:59,000 475 00:25:59,000 --> 00:26:01,000 476 00:26:01,000 --> 00:26:06,000 477 00:26:06,000 --> 00:26:09,000 478 00:26:09,000 --> 00:26:15,000 479 00:26:15,000 --> 00:26:15,000 480 00:26:15,000 --> 00:26:17,000 481 00:26:17,000 --> 00:26:21,000 482 00:26:21,000 --> 00:26:23,000 483 00:26:23,000 --> 00:26:27,000 484 00:26:27,000 --> 00:26:29,000 485 00:26:29,000 --> 00:26:31,000 486 00:26:31,000 --> 00:26:36,000 487 00:26:36,000 --> 00:26:41,000 488 00:26:41,000 --> 00:26:43,000 489 00:26:43,000 --> 00:26:50,000 490 00:26:51,000 --> 00:26:53,000 491 00:26:53,000 --> 00:26:57,000 492 00:26:57,000 --> 00:26:59,000 493 00:26:59,000 --> 00:27:02,000 494 00:27:02,000 --> 00:27:04,000 495 00:27:04,000 --> 00:27:07,000 496 00:27:07,000 --> 00:27:11,000 497 00:27:11,000 --> 00:27:13,000 498 00:27:13,000 --> 00:27:17,000 499 00:27:17,000 --> 00:27:19,000 500 00:27:19,000 --> 00:27:20,000 501 00:27:20,000 --> 00:27:22,000 502 00:27:22,000 --> 00:27:25,000 503 00:27:25,000 --> 00:27:28,000 504 00:27:28,000 --> 00:27:32,000 505 00:27:32,000 --> 00:27:34,000 506 00:27:34,000 --> 00:27:36,000 507 00:27:36,000 --> 00:27:37,000 508 00:27:37,000 --> 00:27:39,000 509 00:27:39,000 --> 00:27:42,000 510 00:27:42,000 --> 00:27:44,000 511 00:27:44,000 --> 00:27:51,000 512 00:28:00,000 --> 00:28:05,000 513 00:28:05,000 --> 00:28:07,000 514 00:28:07,000 --> 00:28:10,000 515 00:28:10,000 --> 00:28:11,000 516 00:28:11,000 --> 00:28:15,000 517 00:28:15,000 --> 00:28:19,000 518 00:28:19,000 --> 00:28:22,000 519 00:28:22,000 --> 00:28:29,000 520 00:28:39,000 --> 00:28:43,000 521 00:28:43,000 --> 00:28:46,000 522 00:28:46,000 --> 00:28:50,000 523 00:28:50,000 --> 00:28:52,000 524 00:28:52,000 --> 00:28:56,000 525 00:28:56,000 --> 00:28:59,000 526 00:28:59,000 --> 00:29:02,000 527 00:29:02,000 --> 00:29:08,000 528 00:29:08,000 --> 00:29:10,000 529 00:29:10,000 --> 00:29:12,000 530 00:29:12,000 --> 00:29:14,000 531 00:29:14,000 --> 00:29:18,000 532 00:29:18,000 --> 00:29:21,000 533 00:29:21,000 --> 00:29:25,000 534 00:29:25,000 --> 00:29:26,000 535 00:29:26,000 --> 00:29:30,000 536 00:29:30,000 --> 00:29:32,000 537 00:29:32,000 --> 00:29:35,000 538 00:29:35,000 --> 00:29:39,000 539 00:29:39,000 --> 00:29:40,000 540 00:29:40,000 --> 00:29:41,000 541 00:29:41,000 --> 00:29:48,000 542 00:29:48,000 --> 00:29:51,000 543 00:29:51,000 --> 00:29:57,000 544 00:29:57,000 --> 00:30:01,000 545 00:30:01,000 --> 00:30:02,000 546 00:30:02,000 --> 00:30:07,000 547 00:30:07,000 --> 00:30:12,000 548 00:30:12,000 --> 00:30:13,000 549 00:30:13,000 --> 00:30:17,000 550 00:30:17,000 --> 00:30:19,000 551 00:30:19,000 --> 00:30:22,000 552 00:30:22,000 --> 00:30:23,000 553 00:30:23,000 --> 00:30:27,000 554 00:30:27,000 --> 00:30:31,000 555 00:30:31,000 --> 00:30:33,000 556 00:30:33,000 --> 00:30:34,000 557 00:30:34,000 --> 00:30:37,000 558 00:30:37,000 --> 00:30:39,000 559 00:30:39,000 --> 00:30:42,000 560 00:30:42,000 --> 00:30:46,000 561 00:30:46,000 --> 00:30:47,000 562 00:30:47,000 --> 00:30:50,000 563 00:30:50,000 --> 00:30:52,000 564 00:30:52,000 --> 00:30:56,000 565 00:30:56,000 --> 00:31:00,000 566 00:31:00,000 --> 00:31:02,000 567 00:31:02,000 --> 00:31:07,000 568 00:31:07,000 --> 00:31:09,000 569 00:31:09,000 --> 00:31:13,000 570 00:31:13,000 --> 00:31:14,000 571 00:31:14,000 --> 00:31:16,000 572 00:31:16,000 --> 00:31:18,000 573 00:31:18,000 --> 00:31:23,000 574 00:31:23,000 --> 00:31:26,000 575 00:31:26,000 --> 00:31:28,000 576 00:31:28,000 --> 00:31:30,000 577 00:31:30,000 --> 00:31:34,000 578 00:31:34,000 --> 00:31:36,000 579 00:31:36,000 --> 00:31:37,000 580 00:31:37,000 --> 00:31:41,000 581 00:31:41,000 --> 00:31:46,000 582 00:31:46,000 --> 00:31:48,000 583 00:31:48,000 --> 00:31:51,000 584 00:31:51,000 --> 00:31:55,000 585 00:31:55,000 --> 00:31:57,000 586 00:31:57,000 --> 00:31:59,000 587 00:31:59,000 --> 00:32:01,000 588 00:32:01,000 --> 00:32:03,000 589 00:32:03,000 --> 00:32:05,000 590 00:32:05,000 --> 00:32:09,000 591 00:32:09,000 --> 00:32:15,000 592 00:32:15,000 --> 00:32:22,000 593 00:32:22,000 --> 00:32:25,000 594 00:32:25,000 --> 00:32:31,000 595 00:32:31,000 --> 00:32:31,000 596 00:32:31,000 --> 00:32:34,000 597 00:32:34,000 --> 00:32:41,000 598 00:32:41,000 --> 00:32:47,000 599 00:32:47,000 --> 00:32:54,000 600 00:32:59,000 --> 00:33:04,000 601 00:33:04,000 --> 00:33:10,000 602 00:33:10,000 --> 00:33:11,000 603 00:33:11,000 --> 00:33:13,000 604 00:33:13,000 --> 00:33:20,000 605 00:33:29,000 --> 00:33:34,000 606 00:33:34,000 --> 00:33:37,000 607 00:33:37,000 --> 00:33:41,000 608 00:33:41,000 --> 00:33:46,000 609 00:33:46,000 --> 00:33:50,000 610 00:33:50,000 --> 00:33:53,000 611 00:33:53,000 --> 00:33:56,000 612 00:33:56,000 --> 00:33:58,000 613 00:33:58,000 --> 00:34:01,000 614 00:34:01,000 --> 00:34:04,000 615 00:34:04,000 --> 00:34:08,000 616 00:34:08,000 --> 00:34:11,000 617 00:34:11,000 --> 00:34:13,000 618 00:34:13,000 --> 00:34:16,000 619 00:34:16,000 --> 00:34:20,000 620 00:34:20,000 --> 00:34:24,000 621 00:34:24,000 --> 00:34:31,000 622 00:34:38,000 --> 00:34:43,000 623 00:34:43,000 --> 00:34:47,000 624 00:34:47,000 --> 00:34:50,000 625 00:34:50,000 --> 00:34:54,000 626 00:34:54,000 --> 00:34:56,000 627 00:34:56,000 --> 00:35:00,000 628 00:35:00,000 --> 00:35:03,000 629 00:35:03,000 --> 00:35:06,000 630 00:35:06,000 --> 00:35:08,000 631 00:35:08,000 --> 00:35:11,000 632 00:35:11,000 --> 00:35:15,000 633 00:35:15,000 --> 00:35:19,000 634 00:35:19,000 --> 00:35:21,000 635 00:35:21,000 --> 00:35:23,000 636 00:35:23,000 --> 00:35:26,000 637 00:35:26,000 --> 00:35:29,000 638 00:35:29,000 --> 00:35:33,000 639 00:35:33,000 --> 00:35:37,000 640 00:35:37,000 --> 00:35:39,000 641 00:35:39,000 --> 00:35:42,000 642 00:35:42,000 --> 00:35:45,000 643 00:35:45,000 --> 00:35:49,000 644 00:35:49,000 --> 00:35:52,000 645 00:35:52,000 --> 00:35:53,000 646 00:35:53,000 --> 00:35:57,000 647 00:35:57,000 --> 00:36:04,000 648 00:36:06,000 --> 00:36:07,000 649 00:36:07,000 --> 00:36:10,000 650 00:36:10,000 --> 00:36:12,000 651 00:36:12,000 --> 00:36:16,000 652 00:36:16,000 --> 00:36:18,000 653 00:36:18,000 --> 00:36:19,000 654 00:36:19,000 --> 00:36:23,000 655 00:36:23,000 --> 00:36:28,000 656 00:36:28,000 --> 00:36:30,000 657 00:36:30,000 --> 00:36:35,000 658 00:36:35,000 --> 00:36:37,000 659 00:36:37,000 --> 00:36:40,000 660 00:36:40,000 --> 00:36:44,000 661 00:36:44,000 --> 00:36:48,000 662 00:36:48,000 --> 00:36:54,000 663 00:36:54,000 --> 00:36:55,000 664 00:36:55,000 --> 00:36:58,000 665 00:36:58,000 --> 00:37:02,000 666 00:37:02,000 --> 00:37:05,000 667 00:37:05,000 --> 00:37:10,000 668 00:37:10,000 --> 00:37:14,000 669 00:37:14,000 --> 00:37:19,000 670 00:37:19,000 --> 00:37:23,000 671 00:37:23,000 --> 00:37:27,000 672 00:37:27,000 --> 00:37:29,000 673 00:37:29,000 --> 00:37:30,000 674 00:37:30,000 --> 00:37:37,000 675 00:37:40,000 --> 00:37:44,000 676 00:37:44,000 --> 00:37:48,000 677 00:37:48,000 --> 00:37:49,000 678 00:37:49,000 --> 00:37:54,000 679 00:37:54,000 --> 00:37:56,000 680 00:37:56,000 --> 00:38:00,000 681 00:38:00,000 --> 00:38:02,000 682 00:38:02,000 --> 00:38:06,000 683 00:38:06,000 --> 00:38:07,000 684 00:38:07,000 --> 00:38:11,000 685 00:38:11,000 --> 00:38:13,000 686 00:38:13,000 --> 00:38:16,000 687 00:38:16,000 --> 00:38:19,000 688 00:38:19,000 --> 00:38:22,000 689 00:38:22,000 --> 00:38:25,000 690 00:38:25,000 --> 00:38:27,000 691 00:38:27,000 --> 00:38:31,000 692 00:38:31,000 --> 00:38:34,000 693 00:38:34,000 --> 00:38:40,000 694 00:38:40,000 --> 00:38:43,000 695 00:38:43,000 --> 00:38:46,000 696 00:38:46,000 --> 00:38:49,000 697 00:38:49,000 --> 00:38:50,000 698 00:38:50,000 --> 00:38:52,000 699 00:38:52,000 --> 00:38:57,000 700 00:38:57,000 --> 00:39:00,000 701 00:39:00,000 --> 00:39:03,000 702 00:39:03,000 --> 00:39:08,000 703 00:39:08,000 --> 00:39:09,000 704 00:39:09,000 --> 00:39:16,000 705 00:39:36,000 --> 00:39:38,000 706 00:39:38,000 --> 00:39:41,000 707 00:39:41,000 --> 00:39:43,000 708 00:39:43,000 --> 00:39:48,000 709 00:39:48,000 --> 00:39:50,000 710 00:39:50,000 --> 00:39:54,000 711 00:39:54,000 --> 00:39:57,000 712 00:39:57,000 --> 00:40:04,000 713 00:40:04,000 --> 00:40:11,000 714 00:40:11,000 --> 00:40:14,000 715 00:40:14,000 --> 00:40:18,000 716 00:40:18,000 --> 00:40:22,000 717 00:40:22,000 --> 00:40:25,000 718 00:40:25,000 --> 00:40:28,000 719 00:40:28,000 --> 00:40:32,000 720 00:40:32,000 --> 00:40:36,000 721 00:40:36,000 --> 00:40:39,000 722 00:40:39,000 --> 00:40:42,000 723 00:40:42,000 --> 00:40:46,000 724 00:40:46,000 --> 00:40:49,000 725 00:40:49,000 --> 00:40:50,000 726 00:40:50,000 --> 00:40:57,000 727 00:40:59,000 --> 00:41:04,000 728 00:41:04,000 --> 00:41:10,000 729 00:41:10,000 --> 00:41:14,000 730 00:41:14,000 --> 00:41:20,000 731 00:41:20,000 --> 00:41:24,000 732 00:41:24,000 --> 00:41:26,000 733 00:41:26,000 --> 00:41:30,000 734 00:41:30,000 --> 00:41:32,000 735 00:41:32,000 --> 00:41:36,000 736 00:41:36,000 --> 00:41:40,000 737 00:41:40,000 --> 00:41:45,000 738 00:41:45,000 --> 00:41:47,000 739 00:41:47,000 --> 00:41:51,000 740 00:41:51,000 --> 00:41:55,000 741 00:41:55,000 --> 00:41:57,000 742 00:41:57,000 --> 00:42:00,000 743 00:42:00,000 --> 00:42:02,000 744 00:42:02,000 --> 00:42:05,000 745 00:42:05,000 --> 00:42:10,000 746 00:42:10,000 --> 00:42:13,000 747 00:42:13,000 --> 00:42:15,000 748 00:42:15,000 --> 00:42:18,000 749 00:42:18,000 --> 00:42:25,000 750 00:42:30,000 --> 00:42:31,000 751 00:42:31,000 --> 00:42:33,000 752 00:42:33,000 --> 00:42:36,000 753 00:42:36,000 --> 00:42:37,000 754 00:42:37,000 --> 00:42:40,000 755 00:42:40,000 --> 00:42:46,000 756 00:42:46,000 --> 00:42:53,000 757 00:42:58,000 --> 00:43:01,000 758 00:43:01,000 --> 00:43:02,000 759 00:43:02,000 --> 00:43:09,000 760 00:43:09,000 --> 00:43:13,000 761 00:43:13,000 --> 00:43:20,000 762 00:43:20,000 --> 00:43:27,000 763 00:43:27,000 --> 00:43:29,000 764 00:43:29,000 --> 00:43:33,000 765 00:43:33,000 --> 00:43:36,000 766 00:43:36,000 --> 00:43:39,000 767 00:43:39,000 --> 00:43:43,000 768 00:43:43,000 --> 00:43:46,000 769 00:43:46,000 --> 00:43:53,000 770 00:43:53,000 --> 00:43:57,000 771 00:43:57,000 --> 00:44:01,000 772 00:44:01,000 --> 00:44:06,000 773 00:44:06,000 --> 00:44:09,000 774 00:44:09,000 --> 00:44:14,000 775 00:44:14,000 --> 00:44:16,000 776 00:44:16,000 --> 00:44:23,000 777 00:44:24,000 --> 00:44:31,000 778 00:44:35,000 --> 00:44:38,000 779 00:44:38,000 --> 00:44:39,000 780 00:44:39,000 --> 00:44:43,000 781 00:44:43,000 --> 00:44:44,000 782 00:44:44,000 --> 00:44:47,000 783 00:44:47,000 --> 00:44:52,000 784 00:44:52,000 --> 00:44:53,000 785 00:44:53,000 --> 00:45:00,000 786 00:45:01,000 --> 00:45:08,000 787 00:45:12,000 --> 00:45:16,000 788 00:45:16,000 --> 00:45:21,000 789 00:45:21,000 --> 00:45:28,000 790 00:45:32,000 --> 00:45:39,000 791 00:45:46,000 --> 00:45:50,000 792 00:45:50,000 --> 00:45:53,000 793 00:45:53,000 --> 00:45:58,000 794 00:45:58,000 --> 00:46:02,000 795 00:46:02,000 --> 00:46:09,000 796 00:46:22,000 --> 00:46:26,000 797 00:46:26,000 --> 00:46:26,000 798 00:46:26,000 --> 00:46:33,000 799 00:46:33,000 --> 00:46:35,000 800 00:46:35,000 --> 00:46:42,000 801 00:46:43,000 --> 00:46:44,000 802 00:46:44,000 --> 00:46:48,000 803 00:46:48,000 --> 00:46:50,000 804 00:46:50,000 --> 00:46:55,000 805 00:46:55,000 --> 00:46:56,000 806 00:46:56,000 --> 00:46:58,000 807 00:46:58,000 --> 00:47:05,000 808 00:47:06,000 --> 00:47:09,000 809 00:47:09,000 --> 00:47:10,000 810 00:47:10,000 --> 00:47:12,000 811 00:47:12,000 --> 00:47:14,000 812 00:47:14,000 --> 00:47:17,000 813 00:47:17,000 --> 00:47:17,000 814 00:47:17,000 --> 00:47:21,000 815 00:47:21,000 --> 00:47:21,000 816 00:47:21,000 --> 00:47:26,000 817 00:47:26,000 --> 00:47:30,000 818 00:47:30,000 --> 00:47:33,000 819 00:47:33,000 --> 00:47:34,000 820 00:47:34,000 --> 00:47:39,000 821 00:47:39,000 --> 00:47:42,000 822 00:47:42,000 --> 00:47:45,000 823 00:47:45,000 --> 00:47:47,000 824 00:47:47,000 --> 00:47:51,000 825 00:47:51,000 --> 00:47:52,000 826 00:47:52,000 --> 00:47:59,000 827 00:48:43,000 --> 00:48:50,000 828 00:48:51,000 --> 00:48:52,000 829 00:48:52,000 --> 00:48:53,000 830 00:48:53,000 --> 00:48:55,000 831 00:48:55,000 --> 00:48:57,000 832 00:48:57,000 --> 00:49:01,000 833 00:49:01,000 --> 00:49:05,000 834 00:49:05,000 --> 00:49:09,000 835 00:49:09,000 --> 00:49:12,000 836 00:49:12,000 --> 00:49:14,000 837 00:49:14,000 --> 00:49:17,000 838 00:49:17,000 --> 00:49:19,000 839 00:49:19,000 --> 00:49:22,000 840 00:49:22,000 --> 00:49:29,000 841 00:49:33,000 --> 00:49:38,000 842 00:49:38,000 --> 00:49:43,000 843 00:49:43,000 --> 00:49:43,000 844 00:49:43,000 --> 00:49:46,000 845 00:49:46,000 --> 00:49:50,000 846 00:49:50,000 --> 00:49:53,000 847 00:49:53,000 --> 00:49:57,000 848 00:49:57,000 --> 00:50:01,000 849 00:50:01,000 --> 00:50:04,000 850 00:50:04,000 --> 00:50:07,000 851 00:50:07,000 --> 00:50:10,000 852 00:50:10,000 --> 00:50:14,000 853 00:50:14,000 --> 00:50:15,000 854 00:50:15,000 --> 00:50:18,000 855 00:50:18,000 --> 00:50:21,000 856 00:50:21,000 --> 00:50:25,000 857 00:50:25,000 --> 00:50:29,000 858 00:50:29,000 --> 00:50:34,000 859 00:50:34,000 --> 00:50:37,000 860 00:50:37,000 --> 00:50:40,000 861 00:50:40,000 --> 00:50:44,000 862 00:50:44,000 --> 00:50:50,000 863 00:50:50,000 --> 00:50:55,000 864 00:50:55,000 --> 00:50:59,000 865 00:50:59,000 --> 00:51:06,000 866 00:51:06,000 --> 00:51:08,000 867 00:51:08,000 --> 00:51:14,000 868 00:51:14,000 --> 00:51:15,000 869 00:51:15,000 --> 00:51:18,000 870 00:51:18,000 --> 00:51:21,000 871 00:51:21,000 --> 00:51:25,000 872 00:51:25,000 --> 00:51:26,000 873 00:51:26,000 --> 00:51:30,000 874 00:51:30,000 --> 00:51:31,000 875 00:51:31,000 --> 00:51:32,000 876 00:51:32,000 --> 00:51:36,000 877 00:51:36,000 --> 00:51:37,000 878 00:51:37,000 --> 00:51:41,000 879 00:51:41,000 --> 00:51:47,000 880 00:51:47,000 --> 00:51:51,000 881 00:51:51,000 --> 00:51:53,000 882 00:51:53,000 --> 00:51:55,000 883 00:51:55,000 --> 00:51:58,000 884 00:51:58,000 --> 00:52:02,000 885 00:52:02,000 --> 00:52:02,000 886 00:52:02,000 --> 00:52:04,000 887 00:52:04,000 --> 00:52:06,000 888 00:52:06,000 --> 00:52:11,000 889 00:52:11,000 --> 00:52:16,000 890 00:52:16,000 --> 00:52:17,000 891 00:52:17,000 --> 00:52:19,000 892 00:52:19,000 --> 00:52:21,000 893 00:52:21,000 --> 00:52:26,000 894 00:52:26,000 --> 00:52:31,000 895 00:52:31,000 --> 00:52:33,000 896 00:52:33,000 --> 00:52:39,000 897 00:52:39,000 --> 00:52:43,000 898 00:52:43,000 --> 00:52:45,000 899 00:52:45,000 --> 00:52:50,000 900 00:52:50,000 --> 00:52:52,000 901 00:52:52,000 --> 00:52:55,000 902 00:52:55,000 --> 00:52:56,000 903 00:52:56,000 --> 00:52:59,000 904 00:52:59,000 --> 00:53:01,000 905 00:53:01,000 --> 00:53:04,000 906 00:53:04,000 --> 00:53:07,000 907 00:53:07,000 --> 00:53:10,000 908 00:53:10,000 --> 00:53:13,000 909 00:53:13,000 --> 00:53:15,000 910 00:53:15,000 --> 00:53:22,000 911 00:53:26,000 --> 00:53:30,000 912 00:53:30,000 --> 00:53:31,000 913 00:53:31,000 --> 00:53:36,000 914 00:53:36,000 --> 00:53:38,000 915 00:53:38,000 --> 00:53:42,000 916 00:53:42,000 --> 00:53:47,000 917 00:53:47,000 --> 00:53:49,000 918 00:53:49,000 --> 00:53:51,000 919 00:53:51,000 --> 00:53:54,000 920 00:53:54,000 --> 00:53:57,000 921 00:53:57,000 --> 00:54:00,000 922 00:54:00,000 --> 00:54:01,000 923 00:54:01,000 --> 00:54:04,000 924 00:54:04,000 --> 00:54:05,000 925 00:54:05,000 --> 00:54:11,000 926 00:54:11,000 --> 00:54:13,000 927 00:54:13,000 --> 00:54:17,000 928 00:54:17,000 --> 00:54:20,000 929 00:54:20,000 --> 00:54:24,000 930 00:54:24,000 --> 00:54:27,000 931 00:54:27,000 --> 00:54:29,000 932 00:54:29,000 --> 00:54:33,000 933 00:54:33,000 --> 00:54:39,000 934 00:54:39,000 --> 00:54:41,000 935 00:54:41,000 --> 00:54:44,000 936 00:54:44,000 --> 00:54:47,000 937 00:54:47,000 --> 00:54:50,000 938 00:54:50,000 --> 00:54:52,000 939 00:54:52,000 --> 00:54:55,000 940 00:54:55,000 --> 00:54:59,000 941 00:54:59,000 --> 00:55:03,000 942 00:55:03,000 --> 00:55:08,000 943 00:55:08,000 --> 00:55:10,000 944 00:55:10,000 --> 00:55:12,000 945 00:55:12,000 --> 00:55:13,000 946 00:55:13,000 --> 00:55:17,000 947 00:55:17,000 --> 00:55:18,000 948 00:55:18,000 --> 00:55:20,000 949 00:55:20,000 --> 00:55:22,000 950 00:55:22,000 --> 00:55:25,000 951 00:55:25,000 --> 00:55:27,000 952 00:55:27,000 --> 00:55:32,000 953 00:55:32,000 --> 00:55:38,000 954 00:55:38,000 --> 00:55:41,000 955 00:55:41,000 --> 00:55:48,000 956 00:55:48,000 --> 00:55:50,000 957 00:55:50,000 --> 00:55:56,000 958 00:55:56,000 --> 00:55:58,000 959 00:55:58,000 --> 00:56:04,000 960 00:56:04,000 --> 00:56:05,000 961 00:56:05,000 --> 00:56:07,000 962 00:56:07,000 --> 00:56:09,000 963 00:56:09,000 --> 00:56:12,000 964 00:56:12,000 --> 00:56:15,000 965 00:56:15,000 --> 00:56:17,000 966 00:56:17,000 --> 00:56:19,000 967 00:56:19,000 --> 00:56:24,000 968 00:56:24,000 --> 00:56:27,000 969 00:56:27,000 --> 00:56:30,000 970 00:56:30,000 --> 00:56:35,000 971 00:56:35,000 --> 00:56:37,000 972 00:56:37,000 --> 00:56:38,000 973 00:56:38,000 --> 00:56:42,000 974 00:56:42,000 --> 00:56:43,000 975 00:56:43,000 --> 00:56:46,000 976 00:56:46,000 --> 00:56:49,000 977 00:56:49,000 --> 00:56:51,000 978 00:56:51,000 --> 00:56:52,000 979 00:56:52,000 --> 00:56:54,000 980 00:56:54,000 --> 00:56:55,000 981 00:56:55,000 --> 00:56:57,000 982 00:56:57,000 --> 00:56:58,000 983 00:56:58,000 --> 00:57:00,000 984 00:57:00,000 --> 00:57:02,000 985 00:57:02,000 --> 00:57:07,000 986 00:57:07,000 --> 00:57:08,000 987 00:57:08,000 --> 00:57:15,000 988 00:57:15,000 --> 00:57:17,000 989 00:57:17,000 --> 00:57:20,000 990 00:57:20,000 --> 00:57:25,000 991 00:57:25,000 --> 00:57:30,000 992 00:57:30,000 --> 00:57:33,000 993 00:57:33,000 --> 00:57:35,000 994 00:57:35,000 --> 00:57:38,000 995 00:57:38,000 --> 00:57:39,000 996 00:57:39,000 --> 00:57:42,000 997 00:57:42,000 --> 00:57:45,000 998 00:57:45,000 --> 00:57:47,000 999 00:57:47,000 --> 00:57:54,000 1000 00:57:56,000 --> 00:57:59,000 1001 00:57:59,000 --> 00:58:02,000 1002 00:58:02,000 --> 00:58:04,000 1003 00:58:04,000 --> 00:58:11,000 1004 00:58:11,000 --> 00:58:15,000 1005 00:58:15,000 --> 00:58:19,000 1006 00:58:19,000 --> 00:58:22,000 1007 00:58:22,000 --> 00:58:24,000 1008 00:58:24,000 --> 00:58:25,000 1009 00:58:25,000 --> 00:58:28,000 1010 00:58:28,000 --> 00:58:31,000 1011 00:58:31,000 --> 00:58:33,000 1012 00:58:33,000 --> 00:58:34,000 1013 00:58:34,000 --> 00:58:37,000 1014 00:58:37,000 --> 00:58:42,000 1015 00:58:42,000 --> 00:58:44,000 1016 00:58:44,000 --> 00:58:48,000 1017 00:58:48,000 --> 00:58:51,000 1018 00:58:51,000 --> 00:58:54,000 1019 00:58:54,000 --> 00:58:55,000 1020 00:58:55,000 --> 00:58:59,000 1021 00:58:59,000 --> 00:59:03,000 1022 00:59:03,000 --> 00:59:05,000 1023 00:59:05,000 --> 00:59:08,000 1024 00:59:08,000 --> 00:59:09,000 1025 00:59:09,000 --> 00:59:14,000 1026 00:59:14,000 --> 00:59:15,000 1027 00:59:15,000 --> 00:59:17,000 1028 00:59:17,000 --> 00:59:18,000 1029 00:59:18,000 --> 00:59:20,000 1030 00:59:20,000 --> 00:59:22,000 1031 00:59:22,000 --> 00:59:29,000 1032 00:59:31,000 --> 00:59:35,000 1033 00:59:35,000 --> 00:59:38,000 1034 00:59:38,000 --> 00:59:41,000 1035 00:59:41,000 --> 00:59:46,000 1036 00:59:46,000 --> 00:59:48,000 1037 00:59:48,000 --> 00:59:50,000 1038 00:59:50,000 --> 00:59:54,000 1039 00:59:54,000 --> 00:59:56,000 1040 00:59:56,000 --> 00:59:59,000 1041 00:59:59,000 --> 01:00:01,000 1042 01:00:01,000 --> 01:00:08,000 1043 01:00:09,000 --> 01:00:16,000 1044 01:00:17,000 --> 01:00:19,000 1045 01:00:19,000 --> 01:00:26,000 1046 01:00:29,000 --> 01:00:35,000 1047 01:00:35,000 --> 01:00:42,000 1048 01:00:51,000 --> 01:00:53,000 1049 01:00:53,000 --> 01:00:57,000 1050 01:00:57,000 --> 01:00:58,000 1051 01:00:58,000 --> 01:01:03,000 1052 01:01:03,000 --> 01:01:08,000 1053 01:01:08,000 --> 01:01:09,000 1054 01:01:09,000 --> 01:01:11,000 1055 01:01:11,000 --> 01:01:14,000 1056 01:01:14,000 --> 01:01:17,000 1057 01:01:17,000 --> 01:01:19,000 1058 01:01:19,000 --> 01:01:20,000 1059 01:01:20,000 --> 01:01:22,000 1060 01:01:22,000 --> 01:01:24,000 1061 01:01:24,000 --> 01:01:27,000 1062 01:01:27,000 --> 01:01:34,000 1063 01:01:58,000 --> 01:01:59,000 1064 01:01:59,000 --> 01:02:03,000 1065 01:02:03,000 --> 01:02:05,000 1066 01:02:05,000 --> 01:02:11,000 1067 01:02:11,000 --> 01:02:18,000 1068 01:02:21,000 --> 01:02:27,000 1069 01:02:27,000 --> 01:02:28,000 1070 01:02:28,000 --> 01:02:32,000 1071 01:02:32,000 --> 01:02:34,000 1072 01:02:34,000 --> 01:02:37,000 1073 01:02:37,000 --> 01:02:40,000 1074 01:02:40,000 --> 01:02:41,000 1075 01:02:41,000 --> 01:02:42,000 1076 01:02:42,000 --> 01:02:45,000 1077 01:02:45,000 --> 01:02:48,000 1078 01:02:48,000 --> 01:02:48,000 1079 01:02:48,000 --> 01:02:51,000 1080 01:02:51,000 --> 01:02:54,000 1081 01:02:54,000 --> 01:02:56,000 1082 01:02:56,000 --> 01:02:58,000 1083 01:02:58,000 --> 01:03:01,000 1084 01:03:01,000 --> 01:03:03,000 1085 01:03:03,000 --> 01:03:08,000 1086 01:03:08,000 --> 01:03:09,000 1087 01:03:09,000 --> 01:03:13,000 1088 01:03:13,000 --> 01:03:14,000 1089 01:03:14,000 --> 01:03:16,000 1090 01:03:16,000 --> 01:03:20,000 1091 01:03:20,000 --> 01:03:23,000 1092 01:03:23,000 --> 01:03:24,000 1093 01:03:24,000 --> 01:03:25,000 1094 01:03:25,000 --> 01:03:27,000 1095 01:03:27,000 --> 01:03:32,000 1096 01:03:32,000 --> 01:03:35,000 1097 01:03:35,000 --> 01:03:36,000 1098 01:03:36,000 --> 01:03:41,000 1099 01:03:41,000 --> 01:03:43,000 1100 01:03:43,000 --> 01:03:48,000 1101 01:03:48,000 --> 01:03:52,000 1102 01:03:52,000 --> 01:03:58,000 1103 01:03:58,000 --> 01:04:00,000 1104 01:04:00,000 --> 01:04:02,000 1105 01:04:02,000 --> 01:04:09,000 1106 01:04:09,000 --> 01:04:13,000 1107 01:04:13,000 --> 01:04:17,000 1108 01:04:17,000 --> 01:04:19,000 1109 01:04:19,000 --> 01:04:21,000 1110 01:04:21,000 --> 01:04:27,000 1111 01:04:27,000 --> 01:04:29,000 1112 01:04:29,000 --> 01:04:36,000 1113 01:04:45,000 --> 01:04:47,000 1114 01:04:47,000 --> 01:04:50,000 1115 01:04:50,000 --> 01:04:53,000 1116 01:04:53,000 --> 01:04:55,000 1117 01:04:55,000 --> 01:04:57,000 1118 01:04:57,000 --> 01:04:58,000 1119 01:04:58,000 --> 01:05:00,000 1120 01:05:00,000 --> 01:05:04,000 1121 01:05:04,000 --> 01:05:06,000 1122 01:05:06,000 --> 01:05:08,000 1123 01:05:08,000 --> 01:05:13,000 1124 01:05:13,000 --> 01:05:15,000 1125 01:05:15,000 --> 01:05:19,000 1126 01:05:19,000 --> 01:05:21,000 1127 01:05:21,000 --> 01:05:24,000 1128 01:05:24,000 --> 01:05:25,000 1129 01:05:25,000 --> 01:05:27,000 1130 01:05:27,000 --> 01:05:34,000 1131 01:05:46,000 --> 01:05:50,000 1132 01:05:50,000 --> 01:05:56,000 1133 01:05:56,000 --> 01:05:59,000 1134 01:05:59,000 --> 01:06:02,000 1135 01:06:02,000 --> 01:06:06,000 1136 01:06:06,000 --> 01:06:07,000 1137 01:06:07,000 --> 01:06:11,000 1138 01:06:11,000 --> 01:06:13,000 1139 01:06:13,000 --> 01:06:19,000 1140 01:06:19,000 --> 01:06:23,000 1141 01:06:23,000 --> 01:06:25,000 1142 01:06:25,000 --> 01:06:30,000 1143 01:06:30,000 --> 01:06:33,000 1144 01:06:33,000 --> 01:06:40,000 1145 01:06:44,000 --> 01:06:46,000 1146 01:06:46,000 --> 01:06:48,000 1147 01:06:48,000 --> 01:06:49,000 1148 01:06:49,000 --> 01:06:51,000 1149 01:06:51,000 --> 01:06:54,000 1150 01:06:54,000 --> 01:06:55,000 1151 01:06:55,000 --> 01:06:58,000 1152 01:06:58,000 --> 01:06:59,000 1153 01:06:59,000 --> 01:07:03,000 1154 01:07:03,000 --> 01:07:06,000 1155 01:07:06,000 --> 01:07:09,000 1156 01:07:09,000 --> 01:07:11,000 1157 01:07:11,000 --> 01:07:14,000 1158 01:07:14,000 --> 01:07:17,000 1159 01:07:17,000 --> 01:07:20,000 1160 01:07:20,000 --> 01:07:23,000 1161 01:07:23,000 --> 01:07:25,000 1162 01:07:25,000 --> 01:07:29,000 1163 01:07:29,000 --> 01:07:32,000 1164 01:07:32,000 --> 01:07:34,000 1165 01:07:34,000 --> 01:07:35,000 1166 01:07:35,000 --> 01:07:39,000 1167 01:07:39,000 --> 01:07:42,000 1168 01:07:42,000 --> 01:07:44,000 1169 01:07:44,000 --> 01:07:48,000 1170 01:07:48,000 --> 01:07:51,000 1171 01:07:51,000 --> 01:07:56,000 1172 01:07:56,000 --> 01:07:59,000 1173 01:07:59,000 --> 01:08:01,000 1174 01:08:01,000 --> 01:08:02,000 1175 01:08:02,000 --> 01:08:05,000 1176 01:08:05,000 --> 01:08:06,000 1177 01:08:06,000 --> 01:08:09,000 1178 01:08:09,000 --> 01:08:13,000 1179 01:08:13,000 --> 01:08:14,000 1180 01:08:14,000 --> 01:08:18,000 1181 01:08:18,000 --> 01:08:20,000 1182 01:08:20,000 --> 01:08:23,000 1183 01:08:23,000 --> 01:08:26,000 1184 01:08:26,000 --> 01:08:32,000 1185 01:08:32,000 --> 01:08:36,000 1186 01:08:36,000 --> 01:08:40,000 1187 01:08:40,000 --> 01:08:41,000 1188 01:08:41,000 --> 01:08:44,000 1189 01:08:44,000 --> 01:08:45,000 1190 01:08:45,000 --> 01:08:49,000 1191 01:08:49,000 --> 01:08:53,000 1192 01:08:53,000 --> 01:08:55,000 1193 01:08:55,000 --> 01:08:57,000 1194 01:08:57,000 --> 01:09:02,000 1195 01:09:02,000 --> 01:09:06,000 1196 01:09:06,000 --> 01:09:09,000 1197 01:09:09,000 --> 01:09:11,000 1198 01:09:11,000 --> 01:09:14,000 1199 01:09:14,000 --> 01:09:17,000 1200 01:09:17,000 --> 01:09:19,000 1201 01:09:19,000 --> 01:09:22,000 1202 01:09:22,000 --> 01:09:26,000 1203 01:09:26,000 --> 01:09:28,000 1204 01:09:28,000 --> 01:09:32,000 1205 01:09:32,000 --> 01:09:36,000 1206 01:09:36,000 --> 01:09:39,000 1207 01:09:39,000 --> 01:09:46,000 1208 01:09:55,000 --> 01:09:58,000 1209 01:09:58,000 --> 01:09:59,000 1210 01:09:59,000 --> 01:10:01,000 1211 01:10:01,000 --> 01:10:08,000 1212 01:10:09,000 --> 01:10:11,000 1213 01:10:11,000 --> 01:10:13,000 1214 01:10:13,000 --> 01:10:13,000 1215 01:10:13,000 --> 01:10:16,000 1216 01:10:16,000 --> 01:10:20,000 1217 01:10:20,000 --> 01:10:23,000 1218 01:10:23,000 --> 01:10:27,000 1219 01:10:27,000 --> 01:10:27,000 1220 01:10:27,000 --> 01:10:30,000 1221 01:10:30,000 --> 01:10:32,000 1222 01:10:32,000 --> 01:10:37,000 1223 01:10:37,000 --> 01:10:38,000 1224 01:10:38,000 --> 01:10:39,000 1225 01:10:39,000 --> 01:10:41,000 1226 01:10:41,000 --> 01:10:43,000 1227 01:10:43,000 --> 01:10:46,000 1228 01:10:46,000 --> 01:10:48,000 1229 01:10:48,000 --> 01:10:52,000 1230 01:10:52,000 --> 01:10:54,000 1231 01:10:54,000 --> 01:11:01,000 1232 01:11:02,000 --> 01:11:07,000 1233 01:11:07,000 --> 01:11:13,000 1234 01:11:13,000 --> 01:11:14,000 1235 01:11:14,000 --> 01:11:17,000 1236 01:11:17,000 --> 01:11:20,000 1237 01:11:20,000 --> 01:11:21,000 1238 01:11:21,000 --> 01:11:24,000 1239 01:11:24,000 --> 01:11:28,000 1240 01:11:28,000 --> 01:11:30,000 1241 01:11:30,000 --> 01:11:32,000 1242 01:11:32,000 --> 01:11:39,000 1243 01:11:44,000 --> 01:11:49,000 1244 01:11:49,000 --> 01:11:51,000 1245 01:11:51,000 --> 01:11:53,000 1246 01:11:53,000 --> 01:11:56,000 1247 01:11:56,000 --> 01:12:00,000 1248 01:12:00,000 --> 01:12:01,000 1249 01:12:01,000 --> 01:12:05,000 1250 01:12:05,000 --> 01:12:09,000 1251 01:12:09,000 --> 01:12:11,000 1252 01:12:11,000 --> 01:12:18,000 1253 01:12:19,000 --> 01:12:23,000 1254 01:12:23,000 --> 01:12:25,000 1255 01:12:25,000 --> 01:12:28,000 1256 01:12:28,000 --> 01:12:31,000 1257 01:12:31,000 --> 01:12:33,000 1258 01:12:33,000 --> 01:12:36,000 1259 01:12:36,000 --> 01:12:41,000 1260 01:12:41,000 --> 01:12:42,000 1261 01:12:42,000 --> 01:12:45,000 1262 01:12:45,000 --> 01:12:49,000 1263 01:12:49,000 --> 01:12:54,000 1264 01:12:54,000 --> 01:12:56,000