[Script Info] Title: [Events] Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text Dialogue: 0,0:00:00.00,0:00:01.09,Default,,0000,0000,0000,, Dialogue: 0,0:00:01.09,0:00:04.30,Default,,0000,0000,0000,,We've dealt with the weak acid,\Nso let's try an example Dialogue: 0,0:00:04.30,0:00:05.34,Default,,0000,0000,0000,,with the weak base. Dialogue: 0,0:00:05.34,0:00:06.59,Default,,0000,0000,0000,,Let's say we had ammonia. Dialogue: 0,0:00:06.59,0:00:09.73,Default,,0000,0000,0000,, Dialogue: 0,0:00:09.73,0:00:12.35,Default,,0000,0000,0000,,That's nitrogen with\Nthree hydrogens. Dialogue: 0,0:00:12.35,0:00:16.37,Default,,0000,0000,0000,,And it's a weak base because\Nit likes to accept hydrogen Dialogue: 0,0:00:16.37,0:00:18.75,Default,,0000,0000,0000,,from water, leaving the water\Nwith just a hydroxide. Dialogue: 0,0:00:18.75,0:00:21.19,Default,,0000,0000,0000,,So it increases the hydroxide\Nconcentration. Dialogue: 0,0:00:21.19,0:00:23.94,Default,,0000,0000,0000,,So if you have some ammonia\Nin an aqueous Dialogue: 0,0:00:23.94,0:00:28.15,Default,,0000,0000,0000,,solution, plus water. Dialogue: 0,0:00:28.15,0:00:29.43,Default,,0000,0000,0000,,I'll throw the water in there. Dialogue: 0,0:00:29.43,0:00:35.47,Default,,0000,0000,0000,,Plus water in an aqueous\Nsolution. Dialogue: 0,0:00:35.47,0:00:36.94,Default,,0000,0000,0000,,It's a weak base. Dialogue: 0,0:00:36.94,0:00:40.53,Default,,0000,0000,0000,,So this reaction doesn't go\Nin just one direction. Dialogue: 0,0:00:40.53,0:00:41.89,Default,,0000,0000,0000,,It's an equilibrium reaction. Dialogue: 0,0:00:41.89,0:00:45.67,Default,,0000,0000,0000,, Dialogue: 0,0:00:45.67,0:00:49.98,Default,,0000,0000,0000,,And since this is a weak base,\Nit-- and this is where the Dialogue: 0,0:00:49.98,0:00:53.14,Default,,0000,0000,0000,,Bronsted-Lowry definition\Nreally kind of pops out. Dialogue: 0,0:00:53.14,0:00:57.04,Default,,0000,0000,0000,,Is that it's a proton acceptor\Ninstead of a donor. Dialogue: 0,0:00:57.04,0:01:03.96,Default,,0000,0000,0000,,So it turns into ammonium,\Nor an ammonia cation. Dialogue: 0,0:01:03.96,0:01:06.97,Default,,0000,0000,0000,,Ammonium has another hydrogen\Non it, so now Dialogue: 0,0:01:06.97,0:01:08.92,Default,,0000,0000,0000,,it has another proton. Dialogue: 0,0:01:08.92,0:01:11.20,Default,,0000,0000,0000,,So it's the plus charge. Dialogue: 0,0:01:11.20,0:01:12.45,Default,,0000,0000,0000,,An it's an aqueous. Dialogue: 0,0:01:12.45,0:01:15.25,Default,,0000,0000,0000,,And it took that hydrogen\Nfrom the water. Dialogue: 0,0:01:15.25,0:01:20.05,Default,,0000,0000,0000,,So plus OH minus aqueous. Dialogue: 0,0:01:20.05,0:01:22.43,Default,,0000,0000,0000,,And remember, if you look at\Nit from the Bronsted-Lowry Dialogue: 0,0:01:22.43,0:01:25.11,Default,,0000,0000,0000,,definition , it was\Na proton acceptor. Dialogue: 0,0:01:25.11,0:01:26.60,Default,,0000,0000,0000,,So that made it a base. Dialogue: 0,0:01:26.60,0:01:28.21,Default,,0000,0000,0000,,Or if you look at the Arrhenius\Ndefinition, it Dialogue: 0,0:01:28.21,0:01:32.01,Default,,0000,0000,0000,,increased the concentration of\NOH in the solution, so that Dialogue: 0,0:01:32.01,0:01:33.86,Default,,0000,0000,0000,,makes it an Arrhenius base. Dialogue: 0,0:01:33.86,0:01:37.06,Default,,0000,0000,0000,,But anyway, given that\Nwe have-- let me Dialogue: 0,0:01:37.06,0:01:37.97,Default,,0000,0000,0000,,pick a random number. Dialogue: 0,0:01:37.97,0:01:48.89,Default,,0000,0000,0000,,Let's say we have 0.2\Nmolar of NH3. Dialogue: 0,0:01:48.89,0:01:51.95,Default,,0000,0000,0000,,What is going to be the pH? Dialogue: 0,0:01:51.95,0:01:55.71,Default,,0000,0000,0000,,So what's going to be our pH of\Nthe solution, considering Dialogue: 0,0:01:55.71,0:01:58.26,Default,,0000,0000,0000,,that it's 0.2 molar of NH3. Dialogue: 0,0:01:58.26,0:01:59.35,Default,,0000,0000,0000,,So the first thing\Nwe need to do. Dialogue: 0,0:01:59.35,0:02:01.93,Default,,0000,0000,0000,,We need to figure out the\Nequilibrium constant for this Dialogue: 0,0:02:01.93,0:02:03.22,Default,,0000,0000,0000,,base reaction. Dialogue: 0,0:02:03.22,0:02:10.82,Default,,0000,0000,0000,,And I just went to Wikipedia--\NI wanted to say liquidpedia, Dialogue: 0,0:02:10.82,0:02:13.37,Default,,0000,0000,0000,,I'm talking about\Nliquids so much. Dialogue: 0,0:02:13.37,0:02:14.13,Default,,0000,0000,0000,,And equilibrium. Dialogue: 0,0:02:14.13,0:02:15.17,Default,,0000,0000,0000,,Equipedia. Dialogue: 0,0:02:15.17,0:02:19.07,Default,,0000,0000,0000,,But I went to Wikipedia, and\Nthey have a little chart for Dialogue: 0,0:02:19.07,0:02:20.63,Default,,0000,0000,0000,,almost any compound\Nyou look for. Dialogue: 0,0:02:20.63,0:02:21.88,Default,,0000,0000,0000,,And they give you pKb. Dialogue: 0,0:02:21.88,0:02:26.12,Default,,0000,0000,0000,, Dialogue: 0,0:02:26.12,0:02:27.76,Default,,0000,0000,0000,,Which is, you see\Nthat p there. Dialogue: 0,0:02:27.76,0:02:32.09,Default,,0000,0000,0000,,That just means it's the\Nminus log base 10 of Dialogue: 0,0:02:32.09,0:02:33.56,Default,,0000,0000,0000,,the equilibrium constant. Dialogue: 0,0:02:33.56,0:02:38.87,Default,,0000,0000,0000,, Dialogue: 0,0:02:38.87,0:02:42.70,Default,,0000,0000,0000,,And they give that\Nas being 4.75. Dialogue: 0,0:02:42.70,0:02:45.33,Default,,0000,0000,0000,,So we can just do a little bit\Nof math here to solve for the Dialogue: 0,0:02:45.33,0:02:47.00,Default,,0000,0000,0000,,equilibrium constant. Dialogue: 0,0:02:47.00,0:02:47.62,Default,,0000,0000,0000,,So let's see. Dialogue: 0,0:02:47.62,0:02:53.22,Default,,0000,0000,0000,,If we multiply both sides by\Nnegative, you get log base 10 Dialogue: 0,0:02:53.22,0:02:57.46,Default,,0000,0000,0000,,of our equilibrium constant\Nfor this base reaction. Dialogue: 0,0:02:57.46,0:02:58.57,Default,,0000,0000,0000,,That's why the b is there. Dialogue: 0,0:02:58.57,0:03:03.03,Default,,0000,0000,0000,,Is equal to minus 4.75,\Nor 10 to the minus Dialogue: 0,0:03:03.03,0:03:05.40,Default,,0000,0000,0000,,4.75 should be Kb. Dialogue: 0,0:03:05.40,0:03:11.54,Default,,0000,0000,0000,,So Kb is equal to 10\Nto the minus 4.75. Dialogue: 0,0:03:11.54,0:03:14.04,Default,,0000,0000,0000,,That's not an easy exponent to\Nfigure out in your head, so Dialogue: 0,0:03:14.04,0:03:16.53,Default,,0000,0000,0000,,I'll bring out the calculator\Nfor that. Dialogue: 0,0:03:16.53,0:03:27.85,Default,,0000,0000,0000,,So if we take 10 to the 4.75\Nminus, it equals, let's just Dialogue: 0,0:03:27.85,0:03:31.46,Default,,0000,0000,0000,,say 1.8 times 10 to\Nthe negative 5. Dialogue: 0,0:03:31.46,0:03:37.32,Default,,0000,0000,0000,,This is equal to 1.8 times\N10 to the minus 5. Dialogue: 0,0:03:37.32,0:03:40.09,Default,,0000,0000,0000,,So now we can use this\Ninformation and we can do a Dialogue: 0,0:03:40.09,0:03:42.26,Default,,0000,0000,0000,,mathematical thing very\Nsimilar to we Dialogue: 0,0:03:42.26,0:03:45.01,Default,,0000,0000,0000,,did in the last video. Dialogue: 0,0:03:45.01,0:03:46.48,Default,,0000,0000,0000,,It's going to be hard to\Nfigure out the hydrogen Dialogue: 0,0:03:46.48,0:03:47.76,Default,,0000,0000,0000,,concentration directly, right? Dialogue: 0,0:03:47.76,0:03:50.52,Default,,0000,0000,0000,,Because our equilibrium reaction\Nonly has hydroxide. Dialogue: 0,0:03:50.52,0:03:53.50,Default,,0000,0000,0000,,But if we know the hydroxide\Nconcentration, then we can Dialogue: 0,0:03:53.50,0:03:55.77,Default,,0000,0000,0000,,back into the hydrogen\Nconcentration, knowing that Dialogue: 0,0:03:55.77,0:04:01.51,Default,,0000,0000,0000,,this plus the hydrogen\Nconcentration has to equal 10 Dialogue: 0,0:04:01.51,0:04:02.44,Default,,0000,0000,0000,,to the minus 14. Dialogue: 0,0:04:02.44,0:04:06.62,Default,,0000,0000,0000,,Or if you figure out the pOH,\Nthat plus the pH has to be 14. Dialogue: 0,0:04:06.62,0:04:09.00,Default,,0000,0000,0000,,And we did that a couple\Nof videos ago. Dialogue: 0,0:04:09.00,0:04:14.06,Default,,0000,0000,0000,,So this equilibrium constant\Nor this formula Dialogue: 0,0:04:14.06,0:04:14.88,Default,,0000,0000,0000,,would look like this. Dialogue: 0,0:04:14.88,0:04:24.94,Default,,0000,0000,0000,,1.8 times 10 to the minus 5\Nwill be equal to-- in the Dialogue: 0,0:04:24.94,0:04:27.88,Default,,0000,0000,0000,,denominator, we have our\Nconcentration of reactants. Dialogue: 0,0:04:27.88,0:04:30.06,Default,,0000,0000,0000,,And remember, you don't\Ninclude the solvent. Dialogue: 0,0:04:30.06,0:04:31.98,Default,,0000,0000,0000,,So you only include the NH3. Dialogue: 0,0:04:31.98,0:04:35.48,Default,,0000,0000,0000,,We have 0.2 molars is what we\Nput in, but some of it, let's Dialogue: 0,0:04:35.48,0:04:37.98,Default,,0000,0000,0000,,say X of it, is going to be\Nconverted into this stuff on Dialogue: 0,0:04:37.98,0:04:39.67,Default,,0000,0000,0000,,the right-hand side. Dialogue: 0,0:04:39.67,0:04:43.38,Default,,0000,0000,0000,,So in the denominator, we're\Ngoing to have 0.2 minus Dialogue: 0,0:04:43.38,0:04:45.87,Default,,0000,0000,0000,,whatever gets converted into\Nthe right-hand side. Dialogue: 0,0:04:45.87,0:04:49.51,Default,,0000,0000,0000,,And so then in the right-hand\Nside, we're going to have x of Dialogue: 0,0:04:49.51,0:04:51.47,Default,,0000,0000,0000,,NH4 and x of OH. Dialogue: 0,0:04:51.47,0:04:54.30,Default,,0000,0000,0000,, Dialogue: 0,0:04:54.30,0:04:58.14,Default,,0000,0000,0000,,This is the concentration\Nof ammonia. Dialogue: 0,0:04:58.14,0:05:00.30,Default,,0000,0000,0000,,And then we have x times x. Dialogue: 0,0:05:00.30,0:05:07.83,Default,,0000,0000,0000,,This is the concentration of\NNH4 plus-- that's a 4. Dialogue: 0,0:05:07.83,0:05:10.32,Default,,0000,0000,0000,,And then this is the\Nconcentration, Dialogue: 0,0:05:10.32,0:05:15.33,Default,,0000,0000,0000,,right here, of OH minus. Dialogue: 0,0:05:15.33,0:05:15.87,Default,,0000,0000,0000,,Right? Dialogue: 0,0:05:15.87,0:05:17.86,Default,,0000,0000,0000,,And we just solve for x. Dialogue: 0,0:05:17.86,0:05:19.85,Default,,0000,0000,0000,,Let's do that. Dialogue: 0,0:05:19.85,0:05:21.08,Default,,0000,0000,0000,,Solve for x. Dialogue: 0,0:05:21.08,0:05:23.39,Default,,0000,0000,0000,,And once we have x, we know\Nthe concentration of OH. Dialogue: 0,0:05:23.39,0:05:25.31,Default,,0000,0000,0000,,We'll be able to figure out\Nthe pOH, and then we'll be Dialogue: 0,0:05:25.31,0:05:27.90,Default,,0000,0000,0000,,able to figure out the pH. Dialogue: 0,0:05:27.90,0:05:28.75,Default,,0000,0000,0000,,OK. Dialogue: 0,0:05:28.75,0:05:32.30,Default,,0000,0000,0000,,Multiply this times both\Nsides of this equation. Dialogue: 0,0:05:32.30,0:05:35.06,Default,,0000,0000,0000,,And just so you know, that same\Nsimplification step that Dialogue: 0,0:05:35.06,0:05:36.38,Default,,0000,0000,0000,,we did in the previous thing. Dialogue: 0,0:05:36.38,0:05:44.26,Default,,0000,0000,0000,,When this is several orders of\Nmagnitude smaller than this Dialogue: 0,0:05:44.26,0:05:49.83,Default,,0000,0000,0000,,number right here-- I want to\Ngive you-- heuristics are just Dialogue: 0,0:05:49.83,0:05:51.29,Default,,0000,0000,0000,,kind of rules of thumb\Nthat sometimes work. Dialogue: 0,0:05:51.29,0:05:53.17,Default,,0000,0000,0000,,Let's just do the quadratic\Nequation. Dialogue: 0,0:05:53.17,0:05:56.15,Default,,0000,0000,0000,,But you can kind of think about\Nsometimes when you can Dialogue: 0,0:05:56.15,0:05:57.00,Default,,0000,0000,0000,,get rid of that middle term. Dialogue: 0,0:05:57.00,0:05:57.76,Default,,0000,0000,0000,,But let's just multiply it. Dialogue: 0,0:05:57.76,0:06:03.45,Default,,0000,0000,0000,,0.2 two times 1.8 is 0.36. Dialogue: 0,0:06:03.45,0:06:07.98,Default,,0000,0000,0000,,0.36 times 10 to the\Nminus 5, right? Dialogue: 0,0:06:07.98,0:06:11.65,Default,,0000,0000,0000,,2 times 1.8 would be\N3.6, this is 0.36. Dialogue: 0,0:06:11.65,0:06:20.66,Default,,0000,0000,0000,,Minus 1.8 times 10 to the\Nminus 5 x, right? Dialogue: 0,0:06:20.66,0:06:22.94,Default,,0000,0000,0000,,Is equal to that. Dialogue: 0,0:06:22.94,0:06:24.90,Default,,0000,0000,0000,,x squared. Dialogue: 0,0:06:24.90,0:06:29.26,Default,,0000,0000,0000,,Let's put everything on the\Nsame side of the equation. Dialogue: 0,0:06:29.26,0:06:31.22,Default,,0000,0000,0000,,I'm going to move all of these\Nthe right-hand side, so you Dialogue: 0,0:06:31.22,0:06:35.09,Default,,0000,0000,0000,,get 0 is equal to x squared. Dialogue: 0,0:06:35.09,0:06:37.99,Default,,0000,0000,0000,,Add this to both sides\Nof the equation. Dialogue: 0,0:06:37.99,0:06:44.52,Default,,0000,0000,0000,,Plus 1.8 times 10 to\Nthe minus 5 x. Dialogue: 0,0:06:44.52,0:06:48.87,Default,,0000,0000,0000,,1.8 times 10 to the minus 5. Dialogue: 0,0:06:48.87,0:06:50.94,Default,,0000,0000,0000,,Just so you can see the\Ncoefficients separate from the Dialogue: 0,0:06:50.94,0:06:53.01,Default,,0000,0000,0000,,x terms. Dialogue: 0,0:06:53.01,0:06:59.86,Default,,0000,0000,0000,,Minus 0.36 times 10\Nto the minus 5. Dialogue: 0,0:06:59.86,0:07:00.99,Default,,0000,0000,0000,,So let's solve this. Dialogue: 0,0:07:00.99,0:07:04.61,Default,,0000,0000,0000,,And once again, if you wanted\Nto kind of do it, you could Dialogue: 0,0:07:04.61,0:07:06.72,Default,,0000,0000,0000,,eliminate this term and then\Njust figure out the straight Dialogue: 0,0:07:06.72,0:07:07.54,Default,,0000,0000,0000,,up square root. Dialogue: 0,0:07:07.54,0:07:08.36,Default,,0000,0000,0000,,But we won't do that. Dialogue: 0,0:07:08.36,0:07:09.89,Default,,0000,0000,0000,,We'll actually use a\Nquadratic equation. Dialogue: 0,0:07:09.89,0:07:12.61,Default,,0000,0000,0000,,So a is 1. Dialogue: 0,0:07:12.61,0:07:13.95,Default,,0000,0000,0000,,b is this. Dialogue: 0,0:07:13.95,0:07:14.53,Default,,0000,0000,0000,,That's b. Dialogue: 0,0:07:14.53,0:07:15.20,Default,,0000,0000,0000,,And this is c. Dialogue: 0,0:07:15.20,0:07:17.34,Default,,0000,0000,0000,,And you just supply than in\Nthe quadratic equation. Dialogue: 0,0:07:17.34,0:07:20.50,Default,,0000,0000,0000,,So you get minus b. Dialogue: 0,0:07:20.50,0:07:26.23,Default,,0000,0000,0000,,So you minus 1.8 times 10\Nto the minus 5 power. Dialogue: 0,0:07:26.23,0:07:27.06,Default,,0000,0000,0000,,Plus or minus. Dialogue: 0,0:07:27.06,0:07:28.79,Default,,0000,0000,0000,,We'll only have to do the plus\Nbecause if we do the minus, Dialogue: 0,0:07:28.79,0:07:30.25,Default,,0000,0000,0000,,we'll end up with a negative\Nconcentration. Dialogue: 0,0:07:30.25,0:07:34.44,Default,,0000,0000,0000,,So plus, the square root-- we\Nhave to do a lot of math Dialogue: 0,0:07:34.44,0:07:36.97,Default,,0000,0000,0000,,here-- b squared. Dialogue: 0,0:07:36.97,0:07:39.22,Default,,0000,0000,0000,,So it's 1.8 times 10\Nto the negative 5. Dialogue: 0,0:07:39.22,0:07:41.55,Default,,0000,0000,0000,,So it's 1.8. Dialogue: 0,0:07:41.55,0:07:45.21,Default,,0000,0000,0000,,If you square it, it's 3.24. Dialogue: 0,0:07:45.21,0:07:51.15,Default,,0000,0000,0000,,So it's 3.24 times-- if you\Nsquare 10 to the minus 5-- 10 Dialogue: 0,0:07:51.15,0:07:57.63,Default,,0000,0000,0000,,to the minus 10 minus 4\Ntimes a, which is 1, Dialogue: 0,0:07:57.63,0:07:59.38,Default,,0000,0000,0000,,times c, which is minus. Dialogue: 0,0:07:59.38,0:08:04.86,Default,,0000,0000,0000,,So it's 4 times-- the minuses\Ncancel out-- times 0.36 times Dialogue: 0,0:08:04.86,0:08:08.22,Default,,0000,0000,0000,,10 to the minus 5. Dialogue: 0,0:08:08.22,0:08:20.14,Default,,0000,0000,0000,,Which is 4 times 0.36\Nis equal to 1.44. Dialogue: 0,0:08:20.14,0:08:21.44,Default,,0000,0000,0000,,I should have been able\Nto do that in my head. Dialogue: 0,0:08:21.44,0:08:25.44,Default,,0000,0000,0000,,Now you have 1.44 e minus 5. Dialogue: 0,0:08:25.44,0:08:30.12,Default,,0000,0000,0000,,Times 10 to-- let\Nme write that. Dialogue: 0,0:08:30.12,0:08:32.55,Default,,0000,0000,0000,,So this is 1.44. Dialogue: 0,0:08:32.55,0:08:36.26,Default,,0000,0000,0000,,And of course all of\Nthis is over 2a. Dialogue: 0,0:08:36.26,0:08:37.39,Default,,0000,0000,0000,,So let's see. Dialogue: 0,0:08:37.39,0:08:38.79,Default,,0000,0000,0000,,This is my x value. Dialogue: 0,0:08:38.79,0:08:41.86,Default,,0000,0000,0000,,My concentration of OH. Dialogue: 0,0:08:41.86,0:08:42.35,Default,,0000,0000,0000,,So let's see. Dialogue: 0,0:08:42.35,0:08:51.38,Default,,0000,0000,0000,,I have 3.24 times 10\Nto the minus 10. Dialogue: 0,0:08:51.38,0:08:53.02,Default,,0000,0000,0000,,That's that. Dialogue: 0,0:08:53.02,0:09:03.87,Default,,0000,0000,0000,,Plus 1.44 times 10 to the minus\N5 is equal to that. Dialogue: 0,0:09:03.87,0:09:05.53,Default,,0000,0000,0000,,So that's this whole thing\Nunder the radical. Dialogue: 0,0:09:05.53,0:09:08.18,Default,,0000,0000,0000,,And I want to take the\Nsquare root of that. Dialogue: 0,0:09:08.18,0:09:12.52,Default,,0000,0000,0000,,And so that is to\Nthe 0.5 power. Dialogue: 0,0:09:12.52,0:09:16.68,Default,,0000,0000,0000,,So I get 0.00379. Dialogue: 0,0:09:16.68,0:09:19.59,Default,,0000,0000,0000,,So I'll switch colors. Dialogue: 0,0:09:19.59,0:09:25.82,Default,,0000,0000,0000,,So I get x is equal to a minus\N1.8 times 10 to the minus 5 Dialogue: 0,0:09:25.82,0:09:33.32,Default,,0000,0000,0000,,plus 0.003794. Dialogue: 0,0:09:33.32,0:09:35.66,Default,,0000,0000,0000,,All of that over 2. Dialogue: 0,0:09:35.66,0:09:36.33,Default,,0000,0000,0000,,Do the math. Dialogue: 0,0:09:36.33,0:09:42.66,Default,,0000,0000,0000,,So to that I'm going to subtract\Nminus this point Dialogue: 0,0:09:42.66,0:09:43.06,Default,,0000,0000,0000,,right here. Dialogue: 0,0:09:43.06,0:09:43.75,Default,,0000,0000,0000,,I have this value. Dialogue: 0,0:09:43.75,0:09:44.99,Default,,0000,0000,0000,,I'm just subtracting this. Dialogue: 0,0:09:44.99,0:09:53.77,Default,,0000,0000,0000,,Minus 1.8 e 5 negative\Nis equal to that. Dialogue: 0,0:09:53.77,0:09:54.75,Default,,0000,0000,0000,,This is the whole numerator. Dialogue: 0,0:09:54.75,0:09:57.47,Default,,0000,0000,0000,,And now I need to just\Ndivide it by 2. Dialogue: 0,0:09:57.47,0:10:03.68,Default,,0000,0000,0000,,Divided by 2 is equal\Nto 0.001. Dialogue: 0,0:10:03.68,0:10:04.43,Default,,0000,0000,0000,,Let me write that. Dialogue: 0,0:10:04.43,0:10:05.91,Default,,0000,0000,0000,,So x. Dialogue: 0,0:10:05.91,0:10:08.14,Default,,0000,0000,0000,,So I'll switch colors\Narbitrarily again. Dialogue: 0,0:10:08.14,0:10:18.48,Default,,0000,0000,0000,,x is equal to 0.001888-- I mean,\Nthen there's a 3 and so Dialogue: 0,0:10:18.48,0:10:19.69,Default,,0000,0000,0000,,forth and so on. Dialogue: 0,0:10:19.69,0:10:21.74,Default,,0000,0000,0000,,But if you remember from\Nour original equation. Dialogue: 0,0:10:21.74,0:10:22.49,Default,,0000,0000,0000,,What was x? Dialogue: 0,0:10:22.49,0:10:26.76,Default,,0000,0000,0000,,It was what's both the ammonium\Nconcentration and the Dialogue: 0,0:10:26.76,0:10:27.86,Default,,0000,0000,0000,,hydroxide concentration. Dialogue: 0,0:10:27.86,0:10:30.53,Default,,0000,0000,0000,,We care about the hydroxide\Nconcentration. Dialogue: 0,0:10:30.53,0:10:36.06,Default,,0000,0000,0000,,So this is equal to my\Nconcentration of hydroxide. Dialogue: 0,0:10:36.06,0:10:40.58,Default,,0000,0000,0000,,Now if I want to figure out my\NpOH, I just take the minus log Dialogue: 0,0:10:40.58,0:10:44.61,Default,,0000,0000,0000,,of this number, which\Nis equal to-- Dialogue: 0,0:10:44.61,0:10:46.83,Default,,0000,0000,0000,,So let's just take\Nthe log of it. Dialogue: 0,0:10:46.83,0:10:49.18,Default,,0000,0000,0000,,The log is that, and then I\Ntake the minus of that. Dialogue: 0,0:10:49.18,0:10:55.18,Default,,0000,0000,0000,,So it's 2.72. Dialogue: 0,0:10:55.18,0:11:00.42,Default,,0000,0000,0000,,And now if we want to figure out\Nthe pH, my concentration Dialogue: 0,0:11:00.42,0:11:03.37,Default,,0000,0000,0000,,of hydrogen ions-- just\Nremember, when you're in an Dialogue: 0,0:11:03.37,0:11:10.74,Default,,0000,0000,0000,,aqueous solution at 25 degrees\NCelsius, your pK of water is Dialogue: 0,0:11:10.74,0:11:15.87,Default,,0000,0000,0000,,equal to your pOH\Nplus your pH. Dialogue: 0,0:11:15.87,0:11:19.73,Default,,0000,0000,0000,,This at 25 degrees is 14. Dialogue: 0,0:11:19.73,0:11:22.82,Default,,0000,0000,0000,,Because you have 10 to the minus\N14 molar concentration-- Dialogue: 0,0:11:22.82,0:11:24.58,Default,,0000,0000,0000,,well no, actually, I don't\Nwant to go into that. Dialogue: 0,0:11:24.58,0:11:26.72,Default,,0000,0000,0000,,You have 10 to the minus\N7 of each of these. Dialogue: 0,0:11:26.72,0:11:28.51,Default,,0000,0000,0000,,But anyway, this is equilibrium\Nconstant for the Dialogue: 0,0:11:28.51,0:11:30.31,Default,,0000,0000,0000,,disassociation of water. Dialogue: 0,0:11:30.31,0:11:37.17,Default,,0000,0000,0000,,This, when water's neutral is 7\Nor a concentration of OH of Dialogue: 0,0:11:37.17,0:11:38.28,Default,,0000,0000,0000,,10 to the minus 7. Dialogue: 0,0:11:38.28,0:11:39.76,Default,,0000,0000,0000,,We can take the minus\Nlog, this becomes 7. Dialogue: 0,0:11:39.76,0:11:44.07,Default,,0000,0000,0000,,But now we know we have a much\Nhigher concentration of OH. Dialogue: 0,0:11:44.07,0:11:45.08,Default,,0000,0000,0000,,2.72. Dialogue: 0,0:11:45.08,0:11:47.55,Default,,0000,0000,0000,,Remember, that minus log\Nkind of flips it. Dialogue: 0,0:11:47.55,0:11:52.67,Default,,0000,0000,0000,,So a lower pOH means a higher\Nconcentration of pOH. Dialogue: 0,0:11:52.67,0:11:53.23,Default,,0000,0000,0000,,Right? Dialogue: 0,0:11:53.23,0:11:57.20,Default,,0000,0000,0000,,And a lower pOH, if this\Nis lower, right? Dialogue: 0,0:11:57.20,0:11:58.48,Default,,0000,0000,0000,,This is a lower pOH. Dialogue: 0,0:11:58.48,0:12:00.29,Default,,0000,0000,0000,,That means your pH is higher. Dialogue: 0,0:12:00.29,0:12:03.57,Default,,0000,0000,0000,, Dialogue: 0,0:12:03.57,0:12:04.87,Default,,0000,0000,0000,,So what is your pH\Ngoing to be? Dialogue: 0,0:12:04.87,0:12:15.02,Default,,0000,0000,0000,,So your pH is going to be\Nequal to 14 minus 2.72. Dialogue: 0,0:12:15.02,0:12:21.71,Default,,0000,0000,0000,,So let me do the minus\Nplus 14 is equal to-- Dialogue: 0,0:12:21.71,0:12:23.57,Default,,0000,0000,0000,,let's just say 11.3. Dialogue: 0,0:12:23.57,0:12:26.65,Default,,0000,0000,0000,,So your pH is equal to 11.3. Dialogue: 0,0:12:26.65,0:12:30.85,Default,,0000,0000,0000,,Which makes sense, because we\Nsaid this was a weak base. Dialogue: 0,0:12:30.85,0:12:33.68,Default,,0000,0000,0000,,Ammonia is a weak base. Dialogue: 0,0:12:33.68,0:12:35.07,Default,,0000,0000,0000,,So it's basic. Dialogue: 0,0:12:35.07,0:12:39.12,Default,,0000,0000,0000,,So it should increase your\NpH above the neutral 7. Dialogue: 0,0:12:39.12,0:12:42.80,Default,,0000,0000,0000,,So the pH should be greater than\N7, but as you compare it Dialogue: 0,0:12:42.80,0:12:45.28,Default,,0000,0000,0000,,to some of the strong bases\Nbefore that took our pH when Dialogue: 0,0:12:45.28,0:12:49.41,Default,,0000,0000,0000,,you added a molar to 14, this\Ntook our pH-- although we only Dialogue: 0,0:12:49.41,0:12:54.01,Default,,0000,0000,0000,,did add 0.2 molar\Nof it to 11.3. Dialogue: 0,0:12:54.01,0:12:56.97,Default,,0000,0000,0000,,Anyway, this is more of a math\Nproblem than chemistry, but Dialogue: 0,0:12:56.97,0:12:59.80,Default,,0000,0000,0000,,hopefully it clarified\Na few things as well.