1 00:00:00,000 --> 00:00:02,200 1/2乘以log以2为底32的对数 2 00:00:00,000 --> 00:00:01,200 1/2仍然在外面 3 00:00:00,000 --> 00:00:01,000 10/4-3/4=7/4 4 00:00:00,000 --> 00:00:01,333 3乘以1/4 减去3/4 5 00:00:00,000 --> 00:00:01,000 log 32 6 00:00:00,000 --> 00:00:02,666 log以2为底32的对数减去 对吗? 7 00:00:00,000 --> 00:00:01,000 乘以log 32 8 00:00:00,000 --> 00:00:01,600 也是这节课开始的 9 00:00:00,000 --> 00:00:01,600 但请明白其中要点 10 00:00:00,000 --> 00:00:01,000 再见 11 00:00:00,000 --> 00:00:01,733 减去 这里8的1/2次方 12 00:00:00,000 --> 00:00:01,000 减去1/4 13 00:00:00,000 --> 00:00:02,133 减去1/4log以2为底8的对数 14 00:00:00,000 --> 00:00:02,333 减去log以2为底根号8的对数 15 00:00:00,000 --> 00:00:01,800 变成整个式子的系数 16 00:00:00,000 --> 00:00:01,800 只是移了指数的位置 17 00:00:00,000 --> 00:00:01,400 因为1/2乘进来了 18 00:00:00,000 --> 00:00:01,400 因为这里是相除 19 00:00:00,000 --> 00:00:01,000 它等于1/2 20 00:00:00,000 --> 00:00:01,200 它等于括号log 21 00:00:00,000 --> 00:00:01,000 对吗? 22 00:00:00,000 --> 00:00:01,200 所以它又等于 23 00:00:00,000 --> 00:00:01,600 把外面的1/2乘进去 24 00:00:00,000 --> 00:00:01,200 有可能算错了 25 00:00:00,000 --> 00:00:01,000 然后可以 26 00:00:00,000 --> 00:00:01,866 现在这里是相除 对吗 27 00:00:00,000 --> 00:00:03,400 由这集视频一开始讲的那个性质得出的 28 00:00:00,000 --> 00:00:02,200 等于1/2log以2为底32的对数 29 00:00:00,000 --> 00:00:02,533 等于1/2乘以log以2为底8的对数 30 00:00:00,000 --> 00:00:01,000 算算看 31 00:00:00,000 --> 00:00:02,000 这时可以用另一个性质 32 00:00:00,000 --> 00:00:01,600 这是5/2 减去 这是3 33 00:00:00,000 --> 00:00:01,400 这里忘了写底数 34 00:00:00,000 --> 00:00:01,600 这里还有一个根号 35 00:00:00,000 --> 00:00:01,000 那个性质 36 00:00:00,000 --> 00:00:01,000 除以根号8 37 00:00:00,000 --> 00:00:01,333 除以根号8 对吗 38 00:00:00,000 --> 00:00:01,000 欢迎回来! 39 00:00:00,000 --> 00:00:02,600 这次讲最后两个对数运算性质 40 00:00:00,000 --> 00:00:01,000 这个 41 00:00:00,000 --> 00:00:01,400 我认为这个性质 42 00:00:00,000 --> 00:00:02,800 从某种程度上说是最显而易见的 43 00:00:00,000 --> 00:00:03,000 但就算你觉得不那么明显也别气馁 44 00:00:00,000 --> 00:00:01,600 可能需要反思一下 45 00:00:00,000 --> 00:00:02,400 我鼓励大家把这些运算性质 46 00:00:00,000 --> 00:00:01,200 亲自演练演练 47 00:00:00,000 --> 00:00:03,000 因为只有这样才能真正把它弄明白 48 00:00:00,000 --> 00:00:02,600 学数学不单单是为了考试及格 49 00:00:00,000 --> 00:00:01,266 或者说考试得A 50 00:00:00,000 --> 00:00:02,200 学数学是为了真正理解它 51 00:00:00,000 --> 00:00:02,600 也就能在以后的生活中运用它 52 00:00:00,000 --> 00:00:02,800 而不必在用到的时候再重学一遍 53 00:00:00,000 --> 00:00:02,400 接下来讲的对数运算性质是 54 00:00:00,000 --> 00:00:02,000 A乘以log以B为底C的对数 55 00:00:00,000 --> 00:00:01,266 A乘以这个式子 56 00:00:00,000 --> 00:00:02,600 等于log以B为底C的A次方的对数 57 00:00:00,000 --> 00:00:01,000 真妙 58 00:00:00,000 --> 00:00:01,400 看看成立不成立 59 00:00:00,000 --> 00:00:01,000 假设 60 00:00:00,000 --> 00:00:02,000 3乘以log以2为底8的对数 61 00:00:00,000 --> 00:00:01,200 根据这个性质 62 00:00:00,000 --> 00:00:01,000 这里等于 63 00:00:00,000 --> 00:00:02,200 log以2为底8的3次方的对数 64 00:00:00,000 --> 00:00:01,000 也就相等- 65 00:00:00,000 --> 00:00:01,866 等于 我们可以算一下 66 00:00:00,000 --> 00:00:01,400 算算这边是多少 67 00:00:00,000 --> 00:00:02,866 3乘以log log以2为底8的对数是几? 68 00:00:00,000 --> 00:00:02,000 刚才这边我犹豫了一下 69 00:00:00,000 --> 00:00:02,200 是因为每次要算一个式子 70 00:00:00,000 --> 00:00:03,400 我总是潜意识的会用对数指数法则去算 71 00:00:00,000 --> 00:00:01,000 这里应避免 72 00:00:00,000 --> 00:00:01,266 好 回来继续算 73 00:00:00,000 --> 00:00:01,400 这部分是多少? 74 00:00:00,000 --> 00:00:01,533 2的几次方等于8? 75 00:00:00,000 --> 00:00:01,866 2的3次方等于8 对吗? 76 00:00:00,000 --> 00:00:01,000 所以是3 77 00:00:00,000 --> 00:00:02,066 这里还有个3 所以3乘以3 78 00:00:00,000 --> 00:00:01,866 那么这边应该也等于9 79 00:00:00,000 --> 00:00:01,066 如果它等于9 80 00:00:00,000 --> 00:00:01,200 可知这个性质 81 00:00:00,000 --> 00:00:02,200 至少对这个例子是成立的 82 00:00:00,000 --> 00:00:03,200 如果不清楚是否在任何情况下都成立 83 00:00:00,000 --> 00:00:01,400 而想看推导证明 84 00:00:00,000 --> 00:00:01,800 可以收看另一集视频 85 00:00:00,000 --> 00:00:01,800 那一集讲的更理论性 86 00:00:00,000 --> 00:00:01,600 而现在最重要的是 87 00:00:00,000 --> 00:00:01,200 明白怎么应用 88 00:00:00,000 --> 00:00:02,000 来看 2的9次方是多少? 89 00:00:00,000 --> 00:00:01,200 算出来会很大 90 00:00:00,000 --> 00:00:01,533 我们知道 应该是- 91 00:00:00,000 --> 00:00:02,400 因为上一集视频里我们算过 92 00:00:00,000 --> 00:00:01,333 2的8次方等于256 93 00:00:00,000 --> 00:00:01,933 那么2的9次方应该是512 94 00:00:00,000 --> 00:00:01,133 2的9次方是512 95 00:00:00,000 --> 00:00:01,733 如果8的3次方也是512 96 00:00:00,000 --> 00:00:01,266 就对了 是吗? 97 00:00:00,000 --> 00:00:02,066 因为log以2为底512的对数 98 00:00:00,000 --> 00:00:01,000 等于9 99 00:00:00,000 --> 00:00:01,533 8的3次方是几呢? 100 00:00:00,000 --> 00:00:01,000 64 对 101 00:00:00,000 --> 00:00:02,066 8的平方是64 那么立方是 102 00:00:00,000 --> 00:00:01,666 算算 4乘8 2 进3 6乘8 103 00:00:00,000 --> 00:00:01,000 等于512 104 00:00:00,000 --> 00:00:01,000 对的 105 00:00:00,000 --> 00:00:02,000 也可以用其他方法验证 106 00:00:00,000 --> 00:00:01,533 可以验证8的3次方 107 00:00:00,000 --> 00:00:01,533 是否等于2的9次方 108 00:00:00,000 --> 00:00:01,000 等不等呢? 109 00:00:00,000 --> 00:00:01,000 8的3次方 110 00:00:00,000 --> 00:00:02,466 等于2的3次方的3次方 对吗? 111 00:00:00,000 --> 00:00:01,266 只是把8替换了 112 00:00:00,000 --> 00:00:01,800 由指数运算法则可知 113 00:00:00,000 --> 00:00:01,400 2的3次方的3次方 114 00:00:00,000 --> 00:00:01,133 等于2的9次方 115 00:00:00,000 --> 00:00:02,000 实际上是指数运算性质 116 00:00:00,000 --> 00:00:02,200 一个底数的乘方后再乘方 117 00:00:00,000 --> 00:00:01,800 可以把两个指数相乘 118 00:00:00,000 --> 00:00:01,600 积作为最终的指数 119 00:00:00,000 --> 00:00:02,400 本质上也就是指数可以相乘 120 00:00:00,000 --> 00:00:01,600 这个指数运算性质 121 00:00:00,000 --> 00:00:02,200 导出了这个对数运算性质 122 00:00:00,000 --> 00:00:01,400 这里不再详细讲 123 00:00:00,000 --> 00:00:01,000 推导过程 124 00:00:00,000 --> 00:00:02,000 另外有一集视频专门讲 125 00:00:00,000 --> 00:00:01,000 推导证明 126 00:00:00,000 --> 00:00:02,400 下面要讲的对数运算性质是 127 00:00:00,000 --> 00:00:04,000 过后会举几个例子复习一下前面学的几个性质 128 00:00:00,000 --> 00:00:01,600 如果你常用计算器 129 00:00:00,000 --> 00:00:02,800 这个性质可能是最有用的一个了 130 00:00:00,000 --> 00:00:01,000 为什么呢 131 00:00:00,000 --> 00:00:02,133 假设是log以B为底A的对数 132 00:00:00,000 --> 00:00:03,866 等于log以C为底A的对数除以log以C为底B的对数 133 00:00:00,000 --> 00:00:01,800 为什么说常用计算器 134 00:00:00,000 --> 00:00:02,000 这个性质就很有用呢? 135 00:00:00,000 --> 00:00:02,266 假设你去上课 有个小测验 136 00:00:00,000 --> 00:00:01,600 老师允许用计算器 137 00:00:00,000 --> 00:00:01,400 要用计算器算出 138 00:00:00,000 --> 00:00:01,733 log以17为底357的对数 139 00:00:00,000 --> 00:00:01,600 你会赶紧找计算器 140 00:00:00,000 --> 00:00:02,800 有没有log以17为底这个键 找不到 141 00:00:00,000 --> 00:00:02,200 因为计算器上压根就没有 142 00:00:00,000 --> 00:00:01,000 这个键 143 00:00:00,000 --> 00:00:01,400 可能会看到log键 144 00:00:00,000 --> 00:00:01,000 或者ln键 145 00:00:00,000 --> 00:00:02,266 你要知道 计算器上的log键 146 00:00:00,000 --> 00:00:01,000 底数是10 147 00:00:00,000 --> 00:00:01,200 ln键的底数是e 148 00:00:00,000 --> 00:00:01,666 如果不知道e是什么 149 00:00:00,000 --> 00:00:02,133 也没关系 它等于2.71几几 150 00:00:00,000 --> 00:00:01,000 一个数字 151 00:00:00,000 --> 00:00:01,200 很奇妙的数字 152 00:00:00,000 --> 00:00:01,800 以后的课程会讲到它 153 00:00:00,000 --> 00:00:02,466 现在 计算器上只有两种底数 154 00:00:00,000 --> 00:00:02,200 要想算出其他底数的对数 155 00:00:00,000 --> 00:00:01,600 就用到这个性质了 156 00:00:00,000 --> 00:00:02,200 所以如果考试碰到这个题 157 00:00:00,000 --> 00:00:01,600 你就可以很自信了 158 00:00:00,000 --> 00:00:01,000 它等于 159 00:00:00,000 --> 00:00:01,200 把笔换成黄色 160 00:00:00,000 --> 00:00:01,600 以表示自信的感觉 161 00:00:00,000 --> 00:00:01,866 log 底数选e或10都可以 162 00:00:00,000 --> 00:00:01,000 就等于 163 00:00:00,000 --> 00:00:01,733 log以10为底357的对数 164 00:00:00,000 --> 00:00:02,066 除以log以10为底17的对数 165 00:00:00,000 --> 00:00:02,000 这时就可以在计算器上 166 00:00:00,000 --> 00:00:01,000 输入357 167 00:00:00,000 --> 00:00:01,000 按下log键 168 00:00:00,000 --> 00:00:01,000 得到某个数 169 00:00:00,000 --> 00:00:01,000 然后清除 170 00:00:00,000 --> 00:00:02,200 或者会用计算器上的括号 171 00:00:00,000 --> 00:00:01,000 也可以做 172 00:00:00,000 --> 00:00:01,733 不会的话就再输入17 173 00:00:00,000 --> 00:00:01,666 按log键 得到某个数 174 00:00:00,000 --> 00:00:01,666 然后相除 得出答案 175 00:00:00,000 --> 00:00:04,266 所以如果喜欢用计算器 这就是个非常有用的性质 176 00:00:00,000 --> 00:00:02,666 再说一遍 这里不会讲的太深入 177 00:00:00,000 --> 00:00:02,800 它对我来说是最有用的一个性质 178 00:00:00,000 --> 00:00:01,400 但是它不完全是 179 00:00:00,000 --> 00:00:03,000 它显然是由指数运算性质推出来的 180 00:00:00,000 --> 00:00:01,800 但一两句话也说不清 181 00:00:00,000 --> 00:00:02,200 如果你不相信它是成立的 182 00:00:00,000 --> 00:00:01,400 可以看推导证明 183 00:00:00,000 --> 00:00:01,400 但是先不管这些 184 00:00:00,000 --> 00:00:02,400 这个性质你在以后的生活里 185 00:00:00,000 --> 00:00:01,000 会经常用到 186 00:00:00,000 --> 00:00:01,600 我工作中仍然在用 187 00:00:00,000 --> 00:00:02,000 你要知道对数用处很多 188 00:00:00,000 --> 00:00:01,400 下面做几个例子 189 00:00:00,000 --> 00:00:02,600 把复杂的式子转化成简单形式 190 00:00:00,000 --> 00:00:01,000 假设是log 191 00:00:00,000 --> 00:00:01,066 以2为底根号 192 00:00:00,000 --> 00:00:01,000 多少呢 193 00:00:00,000 --> 00:00:01,400 32除以3次根号下 194 00:00:00,000 --> 00:00:01,000 算了 根号 195 00:00:00,000 --> 00:00:01,000 除以根号8 196 00:00:00,000 --> 00:00:02,200 怎么转化成简单形式呢? 197 00:00:00,000 --> 00:00:01,000 想一想 198 00:00:00,000 --> 00:00:01,000 它等于 199 00:00:00,000 --> 00:00:02,466 到底是横着写 还是竖着写呢 200 00:00:00,000 --> 00:00:01,000 竖着写吧 201 00:00:00,000 --> 00:00:01,600 它等于log以2为底32 202 00:00:00,000 --> 00:00:02,866 除以根号8 括起来 的1/2次方 对吗 203 00:00:00,000 --> 00:00:01,800 由对数运算性质可知 204 00:00:00,000 --> 00:00:01,466 刚学的第3个性质