Ако бих вас срео на улици и упитао: "Молим вас," "реците ми"... Нисам хтео да пишем оволико дебело... "Молим вас, реците колики је синус од пи кроз 4." И очигледно, претпостављамо да хоћемо да радимо у радијанима. Већ сте запамтили или ћете нацртати јединични круг овде. Није баш најбољи јединични круг, али разумете идеју. Идемо у пи кроз 4 радијана, што је исто што и 45 степени. Нацртаћете то у једничном кругу. Синус је дефинисан као "у" - координта у јединичном кругу. Значи, хтели бисте да сазнате ову вредност овде. И одмах бисте рекли, океј. Овде је 45 степени. Само да нацртам мало већи троугао. Троугао изгледа овако. Овде је 45 степени. То је 45. Овде је 90. Можете да решите троугао 45, 45, 90. Хипотенуза је 1. Ово је х. Ово је х. Биће исте вредности. Ово је једнакокраки троугао, је л' ? Углови на основици су једнаки. Дакле овде важи, х на квадрат плус х на квадрат је 1 на квадрат, што је 1. Два х на квадрат је 1. х на квадрат је 1/2. х је квадратни корен од 1/2, што је један кроз корен из 2. Ово могу да сведем на рационалну форму, ако помножим све кореном из 2 кроз корен из 2. Добијам да је х једнако корен из 2, кроз 2. Дакле ова висина је корен из 2 кроз 2. А ако бисте хетли ову дужину, урадили би исто. Али сада нас занима само висина. Зато што је овде вредност синуса и то је ова висина овде. у - координата Добили смо да је то корен из 2 кроз 2. Ово је само преглед. Ово смо учили у видеу о јединичном кругу. Али шта ако неко... На пример, другог дана дође и упита вас шта је аркус синус од корена из 2 кроз 2? Шта је аркус синус? И ви сте затечени. Ви знате шта је синус угла али ово је нека нова тригонометријска функција коју је Сал измислио. Све што треба је да увидете, да ако имају ову реч аркус испред... То се некад назива и инверз од синуса. То се једноставно може записати као: "Шта је инверз синуса од корена из 2 кроз 2?" Ту се питамо за који угао ће синус бити корен из 2 кроз 2. То је и питање, који угао да узмем да би синус био корен из 2 кроз 2. Могу другачије да напишем било који од ових записа, као квадрат... Урадићу то. Могу да запишем било који од израза као синус од чега је једнак корен из 2 кроз 2. А мислим да је на то питање много лакше дати одговор. Синус од чега је корен из 2 са 2? Управо сам сагледао да је синус од пи четвртина корен из 2 са 2. Значи, овде знам да је синус од пи четвртина корен из 2 са 2. Дакле, знак питања је једнак пи четвртина. Или могу другачије да запишем као аркус синус... Извините. Аркус синус корена из 2 са 2 је једнак пи четвртина. Сад ћете можда рећи ради утврђивања, да вам дајем вредност и тражим угао чији је синус једнак тој вредности. А ви ћете на то: "Хеј, Сал," "види" Само да дођем ту. "Види, пи кроз 2 је у реду." 45 степени је у реду. Али могао бих да додајем по 360 степени, то јест да додајем по 2 пи. И то би било у реду јер ће ме то увек доводити у исту тачку јединичног круга. Зар не? И били бисте у праву. И све те вредности, мислили бисте, биле би исправни одговори за то, је л' да? Пошто је синус од ма којег таквог угла... Додавањем по 360 степени... Ако узмете синус било ког таквог угла, добићете корен из 2 кроз 2. И то је проблем. Немате функцију у којој ако узмем... Немате функцију, еф од х за коју добијате више вредности, је л' ? Добијате пи четвртина, или пи четвртина плус 2 пи, или пи четвртина плус 4 пи. И зато да бисмо добили валидну функцију, валидну инверзну функцију синуса, мораћу да сузим њен кодомен. Само ћемо да сузимо њен кодомен на најприродније место. Дакле, сузимо кодомен. Заправо, успут, на шта се домен сужава? Дакле, ако узмем аркус синус или нешто... Узмем аркус синус од х, и кажем да је то једнако са тета, како је домен сужен? Које су валидне вредности за х? Чему х може бити једнако? За синус ма ког угла се добијају вредности између - 1 и 1, је л' ? Значи, х ће бити веће или једнако од -1, а мање или једнако 1. То је домен. Сада, да бих добио валидну функцију, морам да сузим кодомен на могуће вредности Мораћу да сузим кодомен. За аркус синус је конвенција да се сужава на први и четврти квадрант. Да би сузили област могућих углова на овај део овде у јединичном кругу. Дакле тета је рестриховано на то да буде мање или једнако од пи пола и веће или једнако од минус пи пола. Знајући то, сад разумемо шта је аркус синус. Пређимо на други проблем. Да обезбедимо мало простора. Урадићу други аркус синус. Рецимо да вас питам колики је аркус синус од минус корен из 3 кроз 2. Можда сте запамтили. И рецимо да одмах знам колики је синус од х, то јест синус од тета је корен из 3 кроз 2. И ту би био крај. Али ја то не знам. Зато ћу да нацртам јединични круг. А кад радим са аркус синусом, довољно је да нацртам први и четврти квадрант јединичног круга. Ово је у-оса. Ово је х-оса. х и у. И где сам? Ако је синус од нечега минус корен из 3 са 2, онда је у-координата јединичног круга минус корен из 3 кроз 2. Значи да смо отприлике овде. Значи, ово је минус корен из 3 кроз 2. Овде смо. Који угао ће ми то дати? Размислимо мало. Моја у-координата је минус корен из 3 кроз 2. Ово је угао. Угао је негативан јер идемо испод х-осе у смеру сказаљке на сату. Да би то увидели... Нацртаћу мали троугао овде. Да изаберем прикладнију боју. То је троугао. Урадићу то у плавој боји. Да увећам тај троугао. Тако. Ово је тета. То је тета. И колика је овде дужина? Иста као у-дужина, претпостављамо тако. А то је корен из 3 кроз 2. Минус је јер идемо доле. Али сагледајмо овај угао. Знамо да је негативан. Дакле, кад видимо корен из 3 кроз 2, препознајемо троугао са 30, 60, 90 степени. Корен из 3 кроз 2. Ова страна је 1/2. А овде је, наравно, 1. Пошто је јединични круг. Значи, полупречник је 1. Дакле у троуглу 30, 60, 90, наспрам странице корен из 3 кроз 2 је 60 степени. Овде је 30 степени. Значи, знамо да је тета 60 степени. То је апсолутна вредност. Али иде испод х осе. Зато је минус 60 степени. Тета је значи минус 60 степени. Али, ако радимо у радијанима то није довољно. Зато ћемо то помножити са пи радијана за сваких 180 степени. Степени се скраћују. И добили смо да је тета једнако минус пи кроз 3 радијана. Сад можемо да кажемо... Можемо да тврдимо да је аркус синус од минус корена из 3 кроз 2 једнак минус пи трећина радијана. А можемо рећи да је инверзна функција синуса од корен из 3 кроз 2 једнака минус пи трећина радијана. Да бисмо потврдили то... Само да узмем калкулатор. Поставио сам га у мод са радијанима. Можете то да проверите. Мод по секунди. Ја сам у моду за рад са радијанима. Зато знам да ћу добити прави одговор. Хоћу да нађем инверз синуса. Значи инверз синуса... Друго и дугме за синус... Од минус корен из 3 кроз 2. Једнако је минус 1.04. Каже ми да је то минус 1.04 радијана. Дакле пи трећина мора бити једнако 1.04 радијана. Да потврдимо и то. Ако значи поделим минус пи са 3, шта добијам? Добијам исту вредност. Дакле, калкулатор је исто израчунао, али може бити и да ми калкулатор не помогне јер не говори да је то минус пи кроз 3.