[Script Info] Title: [Events] Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text Dialogue: 0,0:00:00.31,0:00:01.75,Default,,0000,0000,0000,,The planetary gear set, Dialogue: 0,0:00:01.75,0:00:02.72,Default,,0000,0000,0000,,also known as, Dialogue: 0,0:00:02.72,0:00:04.26,Default,,0000,0000,0000,,the epicyclic gear train Dialogue: 0,0:00:04.26,0:00:05.26,Default,,0000,0000,0000,,is one of the most Dialogue: 0,0:00:05.26,0:00:06.47,Default,,0000,0000,0000,,important and interesting Dialogue: 0,0:00:06.47,0:00:08.35,Default,,0000,0000,0000,,inventions in engineering. Dialogue: 0,0:00:08.35,0:00:09.49,Default,,0000,0000,0000,,They are great speed \N Dialogue: 0,0:00:09.49,0:00:10.81,Default,,0000,0000,0000,,variation mechanisms Dialogue: 0,0:00:10.81,0:00:11.88,Default,,0000,0000,0000,,and are often used in Dialogue: 0,0:00:11.88,0:00:13.81,Default,,0000,0000,0000,,automobiles as a vital part of Dialogue: 0,0:00:13.81,0:00:15.23,Default,,0000,0000,0000,,automatic transmissions. Dialogue: 0,0:00:18.58,0:00:19.97,Default,,0000,0000,0000,,Let's explore the secrets Dialogue: 0,0:00:19.97,0:00:21.23,Default,,0000,0000,0000,,of the planetary gear set Dialogue: 0,0:00:21.23,0:00:22.83,Default,,0000,0000,0000,,in this video! Dialogue: 0,0:00:24.66,0:00:26.13,Default,,0000,0000,0000,,A planetary gear set Dialogue: 0,0:00:26.13,0:00:28.03,Default,,0000,0000,0000,,has four main parts: Dialogue: 0,0:00:28.48,0:00:30.04,Default,,0000,0000,0000,,the sun, Dialogue: 0,0:00:30.37,0:00:31.90,Default,,0000,0000,0000,,planet gears, Dialogue: 0,0:00:32.87,0:00:34.54,Default,,0000,0000,0000,,ring gear, Dialogue: 0,0:00:35.54,0:00:37.14,Default,,0000,0000,0000,,and carrier. Dialogue: 0,0:00:37.40,0:00:38.41,Default,,0000,0000,0000,,You can see that it Dialogue: 0,0:00:38.41,0:00:40.53,Default,,0000,0000,0000,,sometimes rotates quickly, Dialogue: 0,0:00:41.71,0:00:43.88,Default,,0000,0000,0000,,sometimes slowly, Dialogue: 0,0:00:46.02,0:00:47.28,Default,,0000,0000,0000,,and sometimes Dialogue: 0,0:00:47.28,0:00:48.87,Default,,0000,0000,0000,,even in reverse. Dialogue: 0,0:00:50.20,0:00:52.49,Default,,0000,0000,0000,,But, how does this happen? Dialogue: 0,0:00:52.49,0:00:53.47,Default,,0000,0000,0000,,You will be able Dialogue: 0,0:00:53.47,0:00:54.51,Default,,0000,0000,0000,,to predict the motion\N Dialogue: 0,0:00:54.51,0:00:55.90,Default,,0000,0000,0000,,of this gear set completely, Dialogue: 0,0:00:55.90,0:00:56.84,Default,,0000,0000,0000,,if you understand Dialogue: 0,0:00:56.84,0:00:58.47,Default,,0000,0000,0000,,one simple fact! Dialogue: 0,0:00:59.12,0:01:00.27,Default,,0000,0000,0000,,When two gears Dialogue: 0,0:01:00.27,0:01:01.52,Default,,0000,0000,0000,,are moving as shown, Dialogue: 0,0:01:01.52,0:01:02.36,Default,,0000,0000,0000,,they should have Dialogue: 0,0:01:02.36,0:01:03.36,Default,,0000,0000,0000,,the same speed Dialogue: 0,0:01:03.36,0:01:04.94,Default,,0000,0000,0000,,at the interface. Dialogue: 0,0:01:04.94,0:01:06.07,Default,,0000,0000,0000,,This means, that the Dialogue: 0,0:01:06.07,0:01:07.50,Default,,0000,0000,0000,,speed of gear A, Dialogue: 0,0:01:07.50,0:01:08.49,Default,,0000,0000,0000,,should be the same \N Dialogue: 0,0:01:08.49,0:01:09.49,Default,,0000,0000,0000,,as gear B, Dialogue: 0,0:01:09.49,0:01:11.39,Default,,0000,0000,0000,,at their mating point. Dialogue: 0,0:01:17.14,0:01:18.41,Default,,0000,0000,0000,,The speed has to be Dialogue: 0,0:01:18.41,0:01:19.32,Default,,0000,0000,0000,,the same, Dialogue: 0,0:01:19.32,0:01:20.30,Default,,0000,0000,0000,,otherwise, Dialogue: 0,0:01:20.30,0:01:21.32,Default,,0000,0000,0000,,the gear teeth will Dialogue: 0,0:01:21.32,0:01:22.34,Default,,0000,0000,0000,,penetrate each other Dialogue: 0,0:01:22.34,0:01:23.55,Default,,0000,0000,0000,,as shown. Dialogue: 0,0:01:23.55,0:01:25.81,Default,,0000,0000,0000,,That is an impossible condition. Dialogue: 0,0:01:26.82,0:01:28.11,Default,,0000,0000,0000,,Just apply this fact Dialogue: 0,0:01:28.11,0:01:29.54,Default,,0000,0000,0000,,to planetary gear sets, Dialogue: 0,0:01:29.54,0:01:31.02,Default,,0000,0000,0000,,and you will be able to predict Dialogue: 0,0:01:31.02,0:01:32.43,Default,,0000,0000,0000,,how speed variation Dialogue: 0,0:01:32.43,0:01:34.12,Default,,0000,0000,0000,,is achieved. Dialogue: 0,0:01:35.86,0:01:37.25,Default,,0000,0000,0000,,Assume that the ring gear Dialogue: 0,0:01:37.25,0:01:38.37,Default,,0000,0000,0000,,is held stationary Dialogue: 0,0:01:38.37,0:01:40.28,Default,,0000,0000,0000,,and we rotate the sun gear. Dialogue: 0,0:01:43.93,0:01:45.17,Default,,0000,0000,0000,,Think of what happens Dialogue: 0,0:01:45.17,0:01:46.86,Default,,0000,0000,0000,,to the planet gears! Dialogue: 0,0:01:47.97,0:01:48.97,Default,,0000,0000,0000,,At point A, Dialogue: 0,0:01:48.97,0:01:49.97,Default,,0000,0000,0000,,the planet gear Dialogue: 0,0:01:49.97,0:01:51.75,Default,,0000,0000,0000,,should have a certain speed Dialogue: 0,0:01:51.75,0:01:53.12,Default,,0000,0000,0000,,and at point B, Dialogue: 0,0:01:53.12,0:01:54.34,Default,,0000,0000,0000,,the speed should be zero,\N Dialogue: 0,0:01:54.34,0:01:55.34,Default,,0000,0000,0000,,as the ring gear Dialogue: 0,0:01:55.34,0:01:56.96,Default,,0000,0000,0000,,is stationary. Dialogue: 0,0:01:56.96,0:01:57.74,Default,,0000,0000,0000,,However, Dialogue: 0,0:01:57.74,0:01:58.53,Default,,0000,0000,0000,,how are both Dialogue: 0,0:01:58.53,0:01:59.51,Default,,0000,0000,0000,,of these conditions\N Dialogue: 0,0:01:59.51,0:02:01.75,Default,,0000,0000,0000,,possible at the same time? Dialogue: 0,0:02:01.75,0:02:03.66,Default,,0000,0000,0000,,There is only one way, Dialogue: 0,0:02:03.66,0:02:04.80,Default,,0000,0000,0000,,the planet gear Dialogue: 0,0:02:04.80,0:02:07.56,Default,,0000,0000,0000,,should spin as well as turn! Dialogue: 0,0:02:07.56,0:02:08.84,Default,,0000,0000,0000,,The spinning will produce Dialogue: 0,0:02:08.84,0:02:10.80,Default,,0000,0000,0000,,velocities in opposite [directions] Dialogue: 0,0:02:10.80,0:02:12.27,Default,,0000,0000,0000,,at the top and bottom points, Dialogue: 0,0:02:12.27,0:02:13.72,Default,,0000,0000,0000,,as shown, Dialogue: 0,0:02:13.72,0:02:14.99,Default,,0000,0000,0000,,whereas, the turning Dialogue: 0,0:02:14.99,0:02:17.52,Default,,0000,0000,0000,,produces unidirectional velocities. Dialogue: 0,0:02:18.85,0:02:19.87,Default,,0000,0000,0000,,At the top, Dialogue: 0,0:02:19.87,0:02:21.60,Default,,0000,0000,0000,,the spinning and turning velocities Dialogue: 0,0:02:21.60,0:02:23.45,Default,,0000,0000,0000,,are in opposite directions, Dialogue: 0,0:02:23.45,0:02:24.45,Default,,0000,0000,0000,,so the velocity of Dialogue: 0,0:02:24.45,0:02:25.93,Default,,0000,0000,0000,,point B is zero. Dialogue: 0,0:02:26.45,0:02:27.31,Default,,0000,0000,0000,,At the bottom, Dialogue: 0,0:02:27.31,0:02:29.05,Default,,0000,0000,0000,,they get added up. Dialogue: 0,0:02:29.78,0:02:30.78,Default,,0000,0000,0000,,In short, Dialogue: 0,0:02:30.78,0:02:31.94,Default,,0000,0000,0000,,the planet gears Dialogue: 0,0:02:31.94,0:02:33.19,Default,,0000,0000,0000,,are forced to turn Dialogue: 0,0:02:33.19,0:02:34.37,Default,,0000,0000,0000,,in order to satisfy Dialogue: 0,0:02:34.37,0:02:36.02,Default,,0000,0000,0000,,the condition of velocity. Dialogue: 0,0:02:36.02,0:02:37.51,Default,,0000,0000,0000,,As the carrier is attached Dialogue: 0,0:02:37.51,0:02:38.97,Default,,0000,0000,0000,,to the planet gear Dialogue: 0,0:02:38.97,0:02:40.18,Default,,0000,0000,0000,,it will turn along Dialogue: 0,0:02:40.18,0:02:42.07,Default,,0000,0000,0000,,with the planet gears. Dialogue: 0,0:02:42.67,0:02:44.06,Default,,0000,0000,0000,,Now, let's see what happens, Dialogue: 0,0:02:44.06,0:02:45.14,Default,,0000,0000,0000,,when the sun gear Dialogue: 0,0:02:45.14,0:02:46.31,Default,,0000,0000,0000,,is held stationary Dialogue: 0,0:02:46.31,0:02:48.47,Default,,0000,0000,0000,,and the ring gear is rotated. Dialogue: 0,0:02:50.36,0:02:51.74,Default,,0000,0000,0000,,This is the exact opposite Dialogue: 0,0:02:51.74,0:02:53.06,Default,,0000,0000,0000,,to the previous case. Dialogue: 0,0:02:53.06,0:02:54.27,Default,,0000,0000,0000,,At the inner point Dialogue: 0,0:02:54.27,0:02:55.49,Default,,0000,0000,0000,,of the planet gear, Dialogue: 0,0:02:55.49,0:02:57.15,Default,,0000,0000,0000,,the velocity should be zero Dialogue: 0,0:02:57.15,0:02:58.49,Default,,0000,0000,0000,,and the outer points Dialogue: 0,0:02:58.49,0:02:59.73,Default,,0000,0000,0000,,should have the speed Dialogue: 0,0:02:59.73,0:03:00.98,Default,,0000,0000,0000,,of the ring gear. Dialogue: 0,0:03:00.98,0:03:02.16,Default,,0000,0000,0000,,In this case, Dialogue: 0,0:03:02.16,0:03:03.22,Default,,0000,0000,0000,,the planetary spin Dialogue: 0,0:03:03.22,0:03:04.06,Default,,0000,0000,0000,,will reverse Dialogue: 0,0:03:04.06,0:03:05.17,Default,,0000,0000,0000,,in order to satisfy Dialogue: 0,0:03:05.17,0:03:06.62,Default,,0000,0000,0000,,the speed conditions. Dialogue: 0,0:03:08.72,0:03:09.59,Default,,0000,0000,0000,,However, Dialogue: 0,0:03:09.59,0:03:10.28,Default,,0000,0000,0000,,this case, Dialogue: 0,0:03:10.28,0:03:11.96,Default,,0000,0000,0000,,has one more difference. Dialogue: 0,0:03:11.96,0:03:13.55,Default,,0000,0000,0000,,The speed of point B, Dialogue: 0,0:03:13.55,0:03:14.52,Default,,0000,0000,0000,,will be higher Dialogue: 0,0:03:14.52,0:03:16.13,Default,,0000,0000,0000,,than [the] speed of point A Dialogue: 0,0:03:16.13,0:03:17.85,Default,,0000,0000,0000,,in the previous case. Dialogue: 0,0:03:17.85,0:03:18.97,Default,,0000,0000,0000,,This is obvious, Dialogue: 0,0:03:18.97,0:03:20.37,Default,,0000,0000,0000,,as the ring gear radius Dialogue: 0,0:03:20.37,0:03:21.33,Default,,0000,0000,0000,,is higher. Dialogue: 0,0:03:25.24,0:03:28.24,Default,,0000,0000,0000,,This will make the planet gear spin and turn at a higher speed thus the carrier will turn at a higher speed Dialogue: 0,0:03:36.57,0:03:40.37,Default,,0000,0000,0000,,Let's now explore this reverse mechanism of Planet Gears Dialogue: 0,0:03:42.58,0:03:46.69,Default,,0000,0000,0000,,For this what you have to do is just arrest the motion of the carrier Dialogue: 0,0:03:47.100,0:03:53.15,Default,,0000,0000,0000,,This means the Planet gears are not allowed to turn and can only spin Dialogue: 0,0:03:55.02,0:03:58.44,Default,,0000,0000,0000,,This Spin will be opposite to the rotation of the sun gear Dialogue: 0,0:03:59.63,0:04:04.28,Default,,0000,0000,0000,,This spinning Planet Gear will make the ring gear rotate in the same Direction Dialogue: 0,0:04:04.62,0:04:12.02,Default,,0000,0000,0000,,In short the direction of rotation of the ring Gear will be the opposite to the sun gear thus we will get the reverse gear Dialogue: 0,0:04:15.37,0:04:22.63,Default,,0000,0000,0000,,Here you can note that in order to achieve different speeds the input must be given to different parts of the planetary gearset Dialogue: 0,0:04:22.63,0:04:25.70,Default,,0000,0000,0000,,This is practically difficult in an actual mechanism Dialogue: 0,0:04:26.53,0:04:29.08,Default,,0000,0000,0000,,in an automatic transmission [to] achieve this Dialogue: 0,0:04:29.08,0:04:35.21,Default,,0000,0000,0000,,Three planetary gear sets are connected in series as shown with coaxial Shafts Dialogue: 0,0:04:35.70,0:04:41.82,Default,,0000,0000,0000,,To understand how this arrangement effectively transfers the input rotation to different parts of the planetary gearset Dialogue: 0,0:04:41.82,0:04:44.66,Default,,0000,0000,0000,,Watch our video on automatic transmission Dialogue: 0,0:04:45.61,0:04:49.61,Default,,0000,0000,0000,,Your support on patreon.com is greatly appreciated to make our educational service sustainable. Thank you