1 00:00:00,510 --> 00:00:09,250 我们想求出随着x接近1时,表达式x/x-1 2 00:00:09,250 --> 00:00:16,080 乘上1/ln x的极限值 3 00:00:16,080 --> 00:00:21,230 所以让我们看下当我们仅是输入1时 4 00:00:21,230 --> 00:00:24,630 会发生什么 5 00:00:24,630 --> 00:00:30,050 好,接着我们在此处得到1,1-1 6 00:00:30,050 --> 00:00:35,040 所以我们会得到1/0减去 7 00:00:35,040 --> 00:00:37,520 1除以,1的自然对数是多少呢 8 00:00:37,520 --> 00:00:40,250 e的几次方等于1呢 9 00:00:40,250 --> 00:00:43,140 任何数的零次幂都为1,所以e的零次幂也为1 10 00:00:43,140 --> 00:00:45,420 所以1的自然对数值为 11 00:00:45,420 --> 00:00:49,350 0 12 00:00:49,350 --> 00:00:54,300 所以我们得到了奇怪且无解的1/0-1/0 13 00:00:54,300 --> 00:00:56,370 这是一种奇怪的无解形式 14 00:00:56,370 --> 00:00:59,880 但这并不是我们在l'Hopital's rule 中看到的无解形式 15 00:00:59,880 --> 00:01:03,750 我们不会求出0/0,也不会求出∞/∞ 16 00:01:03,750 --> 00:01:07,150 所以你也许会说,好吧,这不是一个l'Hopital 法则的问题 17 00:01:07,150 --> 00:01:09,910 我们须以另一种方式将此题解出 18 00:01:09,910 --> 00:01:13,210 不要放弃呀 19 00:01:13,210 --> 00:01:16,880 也许我们可以以某种代数的方式改写这个式子 20 00:01:16,880 --> 00:01:20,380 以使其变化为l'Hopital 的不确定形式 21 00:01:20,380 --> 00:01:23,040 接着我们就可将之直接运用了 22 00:01:23,040 --> 00:01:24,790 为了将之解决,让我们看看如果将这两式相加 23 00:01:24,790 --> 00:01:26,470 又会如何呢 24 00:01:26,470 --> 00:01:29,865 所以如果我将这两式相加 25 00:01:29,865 --> 00:01:36,850 分母将为(x-1)*ln x 26 00:01:36,850 --> 00:01:38,740 我仅是将这两式相乘 27 00:01:38,740 --> 00:01:43,420 接着分子将为 28 00:01:43,420 --> 00:01:46,436 好的,如果我将这整个式子同时乘上ln x 29 00:01:46,436 --> 00:01:51,317 所以分子将为x*ln x 30 00:01:51,317 --> 00:01:52,930 这个式子我将其整体乘以(x-1) 31 00:01:52,930 --> 00:01:54,955 那么即为-(x-1) 32 00:01:58,510 --> 00:02:03,850 你可以将之拆分(验证),并发现其与原式一致 33 00:02:03,900 --> 00:02:10,310 那么在这边,x/x-1,由于ln x消掉了 34 00:02:10,310 --> 00:02:12,220 让我们将其搁一边 35 00:02:12,220 --> 00:02:21,510 那么这边就是-1/ln x由于(x-1)被消掉了 36 00:02:21,510 --> 00:02:25,120 希望你理解了关于我处理这两表达式的用意 37 00:02:25,120 --> 00:02:29,110 所以借此入手,我们看下取x为1时 38 00:02:29,110 --> 00:02:31,600 此式会如何变化呢 39 00:02:31,600 --> 00:02:33,010 因为这些式子是相同的 40 00:02:33,010 --> 00:02:35,320 所以我们得到什么了吗 41 00:02:35,320 --> 00:02:36,360 我们得到了1*ln 1 42 00:02:36,360 --> 00:02:38,810 由于ln 1的值为0所以我们就得到了0 43 00:02:38,810 --> 00:02:47,200 减去0,所以原式值为0 44 00:02:47,200 --> 00:02:51,000 所以我们有了0作为分子 45 00:02:51,000 --> 00:02:55,570 并且在分母中,我们求出了1-1,值为零乘上 46 00:02:55,570 --> 00:03:00,100 ln 1, 其值也为0,故分母值也为0 47 00:03:00,100 --> 00:03:04,940 我们得到了应用l'Hopital法则所需的不定形式 48 00:03:04,940 --> 00:03:07,110 假设我们求出了它的导数 49 00:03:07,110 --> 00:03:09,360 求出极限所在的导数 50 00:03:09,360 --> 00:03:11,130 让我们试着做一下 51 00:03:11,130 --> 00:03:15,340 这将等于 52 00:03:15,340 --> 00:03:19,200 x到1的极限 53 00:03:19,200 --> 00:03:22,490 让我们用品红色将其导数写出 54 00:03:22,490 --> 00:03:26,190 我将取这个分子的导数 55 00:03:26,190 --> 00:03:28,590 所以对第一项,让我们做乘积法则 56 00:03:28,590 --> 00:03:32,970 x的导数是1,接着乘上x的自然对数 57 00:03:32,970 --> 00:03:35,920 第一项的导数乘 58 00:03:35,920 --> 00:03:36,930 第二项 59 00:03:36,930 --> 00:03:39,570 接着我们要加上第二项的导数 60 00:03:39,570 --> 00:03:43,820 加上1/x,乘上第一项 61 00:03:43,820 --> 00:03:45,330 这就是乘积法则 62 00:03:45,330 --> 00:03:47,920 所以1/x乘上x,让我们看下,就是1 63 00:03:47,920 --> 00:03:54,390 接着我们求-(x-1)的导数 64 00:03:54,390 --> 00:03:58,450 x-1的导数就是1 65 00:03:58,450 --> 00:04:01,090 所以我们得到-1 66 00:04:01,090 --> 00:04:08,710 接着分子除以分母的的导数 67 00:04:08,710 --> 00:04:11,340 所以我们来求导 68 00:04:11,340 --> 00:04:16,600 第一项为x-1,则其导数为1 69 00:04:16,600 --> 00:04:20,330 乘上第二项的x的自然对数 70 00:04:20,330 --> 00:04:23,520 x的自然对数的导数 71 00:04:23,520 --> 00:04:28,350 是1/x乘上x-1 72 00:04:32,140 --> 00:04:34,240 我想我们可以将其简化一下 73 00:04:34,240 --> 00:04:37,270 1/x乘x得1 74 00:04:37,270 --> 00:04:38,580 我们将从中减去1 75 00:04:38,580 --> 00:04:40,910 所以这些都消掉了,就在这 76 00:04:40,910 --> 00:04:45,710 所以整个表达式可写为,随着x趋于1 77 00:04:45,710 --> 00:04:51,260 分子是x的自然对数 78 00:04:51,260 --> 00:04:57,160 用红笔写出来了,分母则是 79 00:04:57,160 --> 00:05:03,600 x的自然对数加上(x-1)/x 80 00:05:03,600 --> 00:05:05,250 所以让我们求出此极限的值 81 00:05:05,250 --> 00:05:09,060 当x的值为1时 82 00:05:09,060 --> 00:05:13,640 1的自然对数为0 83 00:05:13,640 --> 00:05:19,720 在这,我们得到了1的自然对数为0 84 00:05:19,720 --> 00:05:27,920 紧接着是1-1/1 85 00:05:27,920 --> 00:05:28,900 又是一个0 86 00:05:28,900 --> 00:05:29,810 1-1为0 87 00:05:29,810 --> 00:05:30,680 所以你将有0+0 88 00:05:30,680 --> 00:05:35,740 你有得到了0/0 89 00:05:35,740 --> 00:05:38,230 所以让我们再度应用l'Hopital法则 90 00:05:38,230 --> 00:05:39,890 让我们求它的导数 91 00:05:39,890 --> 00:05:41,240 除以它的导数 92 00:05:41,240 --> 00:05:44,210 所以如果我们想取极值, 93 00:05:44,210 --> 00:05:51,950 等于,当x到达1时,分子的导数 94 00:05:51,950 --> 00:05:56,320 1/x,是的,x的自然对数的导数的值为 95 00:05:56,320 --> 00:06:00,340 1/x除以分母的导数 96 00:06:00,340 --> 00:06:01,160 那将是多少呢 97 00:06:01,160 --> 00:06:06,950 x的自然对数的导数为1/x加上 98 00:06:06,950 --> 00:06:09,590 (x-1)/x的导数 99 00:06:09,590 --> 00:06:13,120 你可以这样想,1/x乘x 100 00:06:13,120 --> 00:06:16,730 好吧,x到负1的导数,我们将取 101 00:06:16,730 --> 00:06:19,280 第一个数的一乘以第二个数的导数,以及 102 00:06:19,280 --> 00:06:20,670 然后是第二个导数乘上 103 00:06:20,670 --> 00:06:21,610 第一个数 104 00:06:21,610 --> 00:06:24,980 因此,第一项的导数,x 到负 1,是 105 00:06:24,980 --> 00:06:30,030 负x的-2次方乘上第二项, 106 00:06:30,030 --> 00:06:34,830 x-1,加上第二项的导数, 107 00:06:34,830 --> 00:06:39,780 就是1乘上第一项,1/x 108 00:06:39,780 --> 00:06:45,860 所以这将等于 109 00:06:47,070 --> 00:06:48,780 我讲到哪了? 110 00:06:48,780 --> 00:06:50,710 哦我们正在化简原式呢 111 00:06:50,710 --> 00:06:52,210 让我们用上l'Hopital法则 112 00:06:52,210 --> 00:06:58,010 所以这将等于 113 00:06:58,010 --> 00:07:02,390 如果我们使x的值为1 114 00:07:02,390 --> 00:07:05,610 整个分子值为1/1,就是1了 115 00:07:05,610 --> 00:07:09,327 所以我们绝对不会得到一个无穷大或0/0 116 00:07:09,327 --> 00:07:11,460 分母的值将为 117 00:07:11,460 --> 00:07:12,960 如果你取x的值为1,那么就是1/1, 118 00:07:12,960 --> 00:07:18,180 加上-1到-2 119 00:07:18,180 --> 00:07:21,490 或者你可以说,-1到-2就是1,所以是1 120 00:07:21,490 --> 00:07:22,445 只不过是负的罢了 121 00:07:22,445 --> 00:07:24,820 但是接着你将其乘1再减1 122 00:07:24,820 --> 00:07:27,100 就得到0,所以整项都消去了 123 00:07:27,100 --> 00:07:29,890 接着你加上另一个1/1, 124 00:07:29,890 --> 00:07:34,090 所以整个式子将为1/2 125 00:07:34,090 --> 00:07:34,990 你解出来了 126 00:07:34,990 --> 00:07:37,620 通过L'Hopital法则,我们求出了一个 127 00:07:37,620 --> 00:07:39,050 并不会得出0/0结果的式子 128 00:07:39,050 --> 00:07:40,260 的值 129 00:07:40,260 --> 00:07:44,110 我们就乘入了两项并分别得求分子与分母 130 00:07:44,110 --> 00:07:46,460 的导数,求了两次 131 00:07:46,460 --> 00:07:49,180 最终我们得到了极值