WEBVTT 00:00:00.510 --> 00:00:09.250 我们想求出随着x接近1时,表达式x/x-1 00:00:09.250 --> 00:00:16.080 乘上1/ln x的极限值 00:00:16.080 --> 00:00:21.230 所以让我们看下当我们仅是输入1时 00:00:21.230 --> 00:00:24.630 会发生什么 00:00:24.630 --> 00:00:30.050 好,接着我们在此处得到1,1-1 00:00:30.050 --> 00:00:35.040 所以我们会得到1/0减去 00:00:35.040 --> 00:00:37.520 1除以,1的自然对数是多少呢 00:00:37.520 --> 00:00:40.250 e的几次方等于1呢 00:00:40.250 --> 00:00:43.140 任何数的零次幂都为1,所以e的零次幂也为1 00:00:43.140 --> 00:00:45.420 所以1的自然对数值为 00:00:45.420 --> 00:00:49.350 0 00:00:49.350 --> 00:00:54.300 所以我们得到了奇怪且无解的1/0-1/0 00:00:54.300 --> 00:00:56.370 这是一种奇怪的无解形式 00:00:56.370 --> 00:00:59.880 但这并不是我们在l'Hopital's rule 中看到的无解形式 00:00:59.880 --> 00:01:03.750 我们不会求出0/0,也不会求出∞/∞ 00:01:03.750 --> 00:01:07.150 所以你也许会说,好吧,这不是一个l'Hopital 法则的问题 00:01:07.150 --> 00:01:09.910 我们须以另一种方式将此题解出 00:01:09.910 --> 00:01:13.210 不要放弃呀 00:01:13.210 --> 00:01:16.880 也许我们可以以某种代数的方式改写这个式子 00:01:16.880 --> 00:01:20.380 以使其变化为l'Hopital 的不确定形式 00:01:20.380 --> 00:01:23.040 接着我们就可将之直接运用了 00:01:23.040 --> 00:01:24.790 为了将之解决,让我们看看如果将这两式相加 00:01:24.790 --> 00:01:26.470 又会如何呢 00:01:26.470 --> 00:01:29.865 所以如果我将这两式相加 00:01:29.865 --> 00:01:36.850 分母将为(x-1)*ln x 00:01:36.850 --> 00:01:38.740 我仅是将这两式相乘 00:01:38.740 --> 00:01:43.420 接着分子将为 00:01:43.420 --> 00:01:46.436 好的,如果我将这整个式子同时乘上ln x 00:01:46.436 --> 00:01:51.317 所以分子将为x*ln x 00:01:51.317 --> 00:01:52.930 这个式子我将其整体乘以(x-1) 00:01:52.930 --> 00:01:54.955 那么即为-(x-1) 00:01:58.510 --> 00:02:03.850 你可以将之拆分(验证),并发现其与原式一致 00:02:03.900 --> 00:02:10.310 那么在这边,x/x-1,由于ln x消掉了 00:02:10.310 --> 00:02:12.220 让我们将其搁一边 00:02:12.220 --> 00:02:21.510 那么这边就是-1/ln x由于(x-1)被消掉了 00:02:21.510 --> 00:02:25.120 希望你理解了关于我处理这两表达式的用意 00:02:25.120 --> 00:02:29.110 所以借此入手,我们看下取x为1时 00:02:29.110 --> 00:02:31.600 此式会如何变化呢 00:02:31.600 --> 00:02:33.010 因为这些式子是相同的 00:02:33.010 --> 00:02:35.320 所以我们得到什么了吗 00:02:35.320 --> 00:02:36.360 我们得到了1*ln 1 00:02:36.360 --> 00:02:38.810 由于ln 1的值为0所以我们就得到了0 00:02:38.810 --> 00:02:47.200 减去0,所以原式值为0 00:02:47.200 --> 00:02:51.000 所以我们有了0作为分子 00:02:51.000 --> 00:02:55.570 并且在分母中,我们求出了1-1,值为零乘上 00:02:55.570 --> 00:03:00.100 ln 1, 其值也为0,故分母值也为0 00:03:00.100 --> 00:03:04.940 我们得到了应用l'Hopital法则所需的不定形式 00:03:04.940 --> 00:03:07.110 00:03:07.110 --> 00:03:09.360 00:03:09.360 --> 00:03:11.130 00:03:11.130 --> 00:03:15.340 00:03:15.340 --> 00:03:19.200 00:03:19.200 --> 00:03:22.490 00:03:22.490 --> 00:03:26.190 00:03:26.190 --> 00:03:28.590 00:03:28.590 --> 00:03:32.970 00:03:32.970 --> 00:03:35.920 00:03:35.920 --> 00:03:36.930 00:03:36.930 --> 00:03:39.570 00:03:39.570 --> 00:03:43.820 00:03:43.820 --> 00:03:45.430 00:03:45.430 --> 00:03:47.920 00:03:47.920 --> 00:03:54.390 00:03:54.390 --> 00:03:58.450 00:03:58.450 --> 00:04:01.090 00:04:01.090 --> 00:04:08.710 00:04:08.710 --> 00:04:11.340 00:04:11.340 --> 00:04:16.600 00:04:16.600 --> 00:04:20.330 00:04:20.330 --> 00:04:23.520 00:04:23.520 --> 00:04:28.350 00:04:32.140 --> 00:04:34.240 00:04:34.240 --> 00:04:37.270 00:04:37.270 --> 00:04:38.580 00:04:38.580 --> 00:04:40.910 00:04:40.910 --> 00:04:45.710 00:04:45.710 --> 00:04:51.260 00:04:51.260 --> 00:04:57.160 00:04:57.160 --> 00:05:03.600 00:05:03.600 --> 00:05:05.250 00:05:05.250 --> 00:05:09.060 00:05:09.060 --> 00:05:13.640 00:05:13.640 --> 00:05:19.720 00:05:19.720 --> 00:05:27.920 00:05:27.920 --> 00:05:28.900 00:05:28.900 --> 00:05:29.810 00:05:29.810 --> 00:05:30.680 00:05:30.680 --> 00:05:34.140 00:05:34.140 --> 00:05:35.740 00:05:35.740 --> 00:05:38.230 00:05:38.230 --> 00:05:39.890 00:05:39.890 --> 00:05:41.240 00:05:41.240 --> 00:05:44.210 00:05:44.210 --> 00:05:51.950 00:05:51.950 --> 00:05:56.320 00:05:56.320 --> 00:06:00.340 00:06:00.340 --> 00:06:01.160 00:06:01.160 --> 00:06:06.950 00:06:06.950 --> 00:06:09.590 00:06:09.590 --> 00:06:13.120 00:06:13.120 --> 00:06:16.730 00:06:16.730 --> 00:06:19.280 00:06:19.280 --> 00:06:20.670 00:06:20.670 --> 00:06:21.610 00:06:21.610 --> 00:06:24.980 00:06:24.980 --> 00:06:30.030 00:06:30.030 --> 00:06:34.830 00:06:34.830 --> 00:06:39.780 00:06:39.780 --> 00:06:45.060 00:06:45.060 --> 00:06:45.860 00:06:45.860 --> 00:06:47.730 00:06:47.730 --> 00:06:48.780 00:06:48.780 --> 00:06:50.710 00:06:50.710 --> 00:06:52.210 00:06:52.210 --> 00:06:58.010 00:06:58.010 --> 00:07:02.870 00:07:02.870 --> 00:07:05.610 00:07:05.610 --> 00:07:07.406 00:07:07.406 --> 00:07:09.480 00:07:09.480 --> 00:07:12.080 00:07:12.080 --> 00:07:18.180 00:07:18.180 --> 00:07:21.490 00:07:21.490 --> 00:07:22.445 00:07:22.445 --> 00:07:24.820 00:07:24.820 --> 00:07:27.100 00:07:27.100 --> 00:07:29.890 00:07:29.890 --> 00:07:34.090 00:07:34.090 --> 00:07:34.990 00:07:34.990 --> 00:07:37.620 00:07:37.620 --> 00:07:39.050 00:07:39.050 --> 00:07:40.260 00:07:40.260 --> 00:07:44.110 00:07:44.110 --> 00:07:46.460 00:07:46.460 --> 00:07:49.180