WEBVTT 00:00:00.239 --> 00:00:04.424 c 小题,假设 y 等于 f(x) 是微分方程 00:00:04.424 --> 00:00:07.040 在初始条件 f(2) = 3 时的特解。 00:00:07.040 --> 00:00:11.486 00:00:11.486 --> 00:00:15.714 那么 f 在 x 等于 2 处是局部极大值? 00:00:15.714 --> 00:00:18.767 还是局部极小值?或者都不是? 00:00:18.767 --> 00:00:20.889 验证你的结论。 00:00:20.889 --> 00:00:22.199 好的,若要考虑 00:00:22.199 --> 00:00:24.258 局部极小或极大值, 00:00:24.258 --> 00:00:26.706 可以看看这一点的导数。 00:00:26.706 --> 00:00:28.633 如果等于 0,那么这里就有可能是 00:00:28.633 --> 00:00:30.063 00:00:30.063 --> 00:00:32.549 有可能是局部极大或极小值, 00:00:32.549 --> 00:00:34.751 如果不等于 0,那么都不是。 00:00:34.751 --> 00:00:36.114 而如果确实等于 0, 00:00:36.114 --> 00:00:37.705 我们还要判断是极大值还是极小值, 00:00:37.705 --> 00:00:40.845 看看二阶导数算出来是正是负,就能判断。 00:00:40.845 --> 00:00:42.360 我们回到这一题, 00:00:42.360 --> 00:00:45.675 我们要计算 f' 00:00:45.675 --> 00:00:49.314 我们要计算的是 f'—— 00:00:49.314 --> 00:00:53.142 f'(2) 等于什么。 00:00:53.142 --> 00:00:56.712 那么我们知道 f'(x) 00:00:56.712 --> 00:01:01.576 f'(x),也就是 dy/dx, 00:01:01.576 --> 00:01:05.001 它等于 2x 减 y。 00:01:05.001 --> 00:01:06.982 从上一题就能看到。 00:01:06.982 --> 00:01:10.028 所以 f'(2),我这样写 00:01:10.028 --> 00:01:14.184 f'(2) 就等于 00:01:14.184 --> 00:01:16.064 2 乘以 2, 00:01:16.064 --> 00:01:19.121 2 乘以 2 减去 00:01:19.121 --> 00:01:21.761 x 等于 2 时 y 的值。 00:01:21.761 --> 00:01:24.668 我们知道 x 等于 2 时 y 的值吗? 00:01:24.668 --> 00:01:26.873 当然,这里已经给出了。 00:01:26.873 --> 00:01:29.056 y 等于 f(x), 00:01:29.056 --> 00:01:31.029 当 x 等于 2, 00:01:31.029 --> 00:01:32.664 当 x 等于 2 时, 00:01:32.664 --> 00:01:35.197 y 等于 3, 00:01:35.197 --> 00:01:37.937 所以是 2 乘以 2 减 3。 00:01:37.937 --> 00:01:40.653 那么它就等于 4 减 3,等于 1 00:01:40.653 --> 00:01:42.128 00:01:42.128 --> 00:01:47.128 由于在 2 点的导数不等于 0, 00:01:47.190 --> 00:01:50.081 所以它就不是极小值,局部极小值, 00:01:50.081 --> 00:01:53.112 也不是局部极大值, 00:01:53.112 --> 00:01:58.112 所以可以说,由于 f'(2) 00:01:59.240 --> 00:02:02.514 f'(2) 不等于 0, 00:02:02.514 --> 00:02:07.411 这个,我们说 f, 我这样写, 00:02:07.411 --> 00:02:12.411 f 在 x 等于 2 处,既没达到极小值, 00:02:14.114 --> 00:02:16.274 局部极小值,这样说更好, 00:02:16.274 --> 00:02:19.535 局部极小, 00:02:19.535 --> 00:02:23.045 也没有达到局部极大值。 00:02:23.045 --> 00:02:26.324 00:02:26.324 --> 00:02:29.064 好的,下一题。 00:02:29.064 --> 00:02:32.942 计算常数 m 和 b 的值, 00:02:32.942 --> 00:02:37.487 使得 y 等于 mx 加 b 是微分方程的一个解 00:02:37.487 --> 00:02:39.583 00:02:39.583 --> 00:02:41.905 这道题有趣 00:02:41.905 --> 00:02:44.078 我们来,这样吧, 我们先把所有已知条件都写下来 00:02:44.078 --> 00:02:47.257 然后再考虑 y 等于 mx 加 b 00:02:47.257 --> 00:02:49.903 是微分方程的一个解这个条件。 00:02:49.903 --> 00:02:54.507 我们已经知道, 00:02:54.507 --> 00:02:58.939 dy/dx 等于 2x 减 y, 00:02:58.939 --> 00:03:00.273 是已知条件。 00:03:00.273 --> 00:03:02.281 我们也知道二阶导数, 00:03:02.281 --> 00:03:07.281 y 对 x 的二阶导数,等于 00:03:07.519 --> 00:03:12.519 2 减 dy/dx, 00:03:12.824 --> 00:03:14.333 这是我们在 b 小题中得出的结论。 00:03:14.333 --> 00:03:17.269 那么,我们可以将它表示成 00:03:17.269 --> 00:03:18.911 我们看,可以写为 00:03:18.911 --> 00:03:22.599 2 减 2x 加 y,通过代换 00:03:22.599 --> 00:03:25.375 就是把它代换进来 00:03:25.375 --> 00:03:27.826 那么这是 2 减 2x 加 y, 00:03:27.826 --> 00:03:29.282 我这么写, 00:03:29.282 --> 00:03:33.603 00:03:33.603 --> 00:03:35.785 00:03:35.785 --> 00:03:39.081 00:03:39.081 --> 00:03:42.189 00:03:42.189 --> 00:03:44.513 00:03:44.513 --> 00:03:48.924 00:03:48.924 --> 00:03:50.547 00:03:50.547 --> 00:03:54.996 00:03:54.996 --> 00:03:57.362 00:03:57.362 --> 00:04:00.007 00:04:00.007 --> 00:04:01.576 00:04:01.576 --> 00:04:02.842 00:04:02.842 --> 00:04:03.654 00:04:03.654 --> 00:04:06.864 00:04:06.864 --> 00:04:09.460 00:04:09.460 --> 00:04:12.163 00:04:12.163 --> 00:04:14.233 00:04:14.233 --> 00:04:16.074 00:04:16.074 --> 00:04:19.177 00:04:19.177 --> 00:04:21.009 00:04:21.009 --> 00:04:23.549 00:04:23.549 --> 00:04:25.582 00:04:25.582 --> 00:04:28.592 00:04:28.592 --> 00:04:31.350 00:04:31.350 --> 00:04:33.890 00:04:33.890 --> 00:04:37.317 00:04:37.317 --> 00:04:41.230 00:04:41.230 --> 00:04:45.391 00:04:45.391 --> 00:04:50.204 00:04:50.204 --> 00:04:55.204 00:04:55.546 --> 00:04:57.950 00:04:57.950 --> 00:05:00.806 00:05:00.806 --> 00:05:03.453 00:05:03.453 --> 00:05:05.542 00:05:05.542 --> 00:05:08.317 00:05:08.317 --> 00:05:12.149 00:05:12.149 --> 00:05:13.717 00:05:13.717 --> 00:05:15.220 00:05:15.220 --> 00:05:16.032 00:05:16.032 --> 00:05:19.011 00:05:19.011 --> 00:05:22.299 00:05:22.299 --> 00:05:25.120 00:05:25.120 --> 00:05:30.120 00:05:30.832 --> 00:05:34.942 00:05:34.942 --> 00:05:38.158 00:05:38.158 --> 00:05:40.933 00:05:40.933 --> 00:05:43.497 00:05:43.497 --> 00:05:46.285 00:05:46.285 --> 00:05:48.688 00:05:48.688 --> 00:05:52.531 00:05:52.531 --> 00:05:56.455 00:05:56.455 --> 00:05:58.320 00:05:58.320 --> 00:06:01.342 00:06:01.342 --> 00:06:05.152 00:06:05.152 --> 00:06:07.328 00:06:07.328 --> 00:06:09.973 00:06:09.973 --> 00:06:10.952 00:06:10.952 --> 00:06:14.572 00:06:14.572 --> 00:06:16.819 00:06:16.819 --> 00:06:19.717 00:06:19.717 --> 00:06:21.761 00:06:21.761 --> 00:06:24.005 00:06:24.005 --> 00:06:26.007 00:06:26.007 --> 00:06:28.260 00:06:28.260 --> 00:06:29.650 00:06:29.650 --> 00:06:32.339 00:06:32.339 --> 00:06:35.701 00:06:35.701 --> 00:06:37.057 00:06:37.057 --> 00:06:39.867 00:06:39.867 --> 00:06:42.119 00:06:42.119 --> 00:06:44.569 00:06:44.569 --> 00:06:47.669 00:06:47.669 --> 00:06:49.666 00:06:49.666 --> 00:06:52.162 00:06:52.162 --> 00:06:54.484 00:06:54.484 --> 00:06:59.255 00:06:59.255 --> 00:07:01.143 00:07:01.143 --> 00:07:02.725 00:07:02.725 --> 00:07:05.632 00:07:05.632 --> 00:07:07.027 00:07:07.027 --> 00:07:09.263 00:07:09.263 --> 00:07:11.300 00:07:11.300 --> 00:07:14.356 00:07:14.356 --> 00:07:17.717 00:07:17.717 --> 00:07:20.405 00:07:20.405 --> 00:07:22.727 00:07:22.727 --> 00:07:25.548 00:07:25.548 --> 00:07:28.202 00:07:28.202 --> 00:07:33.202 00:07:33.267 --> 00:07:36.666 00:07:36.666 --> 00:07:39.174 00:07:39.174 --> 00:07:42.680 00:07:42.680 --> 00:07:46.268 00:07:46.268 --> 00:07:49.240 00:07:49.240 --> 00:07:51.202 00:07:51.202 --> 00:07:53.570 00:07:53.570 --> 00:07:55.356 00:07:55.356 --> 00:07:57.402 00:07:57.402 --> 00:07:59.730