1 00:00:00,239 --> 00:00:04,424 c 小题,假设 y 等于 f(x) 是微分方程 2 00:00:04,424 --> 00:00:07,040 在初始条件 f(2) = 3 时的特解。 3 00:00:07,040 --> 00:00:11,486 4 00:00:11,486 --> 00:00:15,714 那么 f 在 x 等于 2 处是局部极大值? 5 00:00:15,714 --> 00:00:18,767 还是局部极小值?或者都不是? 6 00:00:18,767 --> 00:00:20,889 验证你的结论。 7 00:00:20,889 --> 00:00:22,199 好的,若要考虑 8 00:00:22,199 --> 00:00:24,258 局部极小或极大值, 9 00:00:24,258 --> 00:00:26,706 可以看看这一点的导数。 10 00:00:26,706 --> 00:00:28,633 如果等于 0,那么这里就有可能是 11 00:00:28,633 --> 00:00:30,063 12 00:00:30,063 --> 00:00:32,549 有可能是局部极大或极小值, 13 00:00:32,549 --> 00:00:34,751 如果不等于 0,那么都不是。 14 00:00:34,751 --> 00:00:36,114 而如果确实等于 0, 15 00:00:36,114 --> 00:00:37,705 我们还要判断是极大值还是极小值, 16 00:00:37,705 --> 00:00:40,845 看看二阶导数算出来是正是负,就能判断。 17 00:00:40,845 --> 00:00:42,360 我们回到这一题, 18 00:00:42,360 --> 00:00:45,675 我们要计算 f' 19 00:00:45,675 --> 00:00:49,314 我们要计算的是 f'—— 20 00:00:49,314 --> 00:00:53,142 f'(2) 等于什么。 21 00:00:53,142 --> 00:00:56,712 那么我们知道 f'(x) 22 00:00:56,712 --> 00:01:01,576 f'(x),也就是 dy/dx, 23 00:01:01,576 --> 00:01:05,001 它等于 2x 减 y。 24 00:01:05,001 --> 00:01:06,982 从上一题就能看到。 25 00:01:06,982 --> 00:01:10,028 所以 f'(2),我这样写 26 00:01:10,028 --> 00:01:14,184 f'(2) 就等于 27 00:01:14,184 --> 00:01:16,064 2 乘以 2, 28 00:01:16,064 --> 00:01:19,121 2 乘以 2 减去 29 00:01:19,121 --> 00:01:21,761 x 等于 2 时 y 的值。 30 00:01:21,761 --> 00:01:24,668 我们知道 x 等于 2 时 y 的值吗? 31 00:01:24,668 --> 00:01:26,873 当然,这里已经给出了。 32 00:01:26,873 --> 00:01:29,056 y 等于 f(x), 33 00:01:29,056 --> 00:01:31,029 当 x 等于 2, 34 00:01:31,029 --> 00:01:32,664 当 x 等于 2 时, 35 00:01:32,664 --> 00:01:35,197 y 等于 3, 36 00:01:35,197 --> 00:01:37,937 所以是 2 乘以 2 减 3。 37 00:01:37,937 --> 00:01:40,653 那么它就等于 4 减 3,等于 1 38 00:01:40,653 --> 00:01:42,128 39 00:01:42,128 --> 00:01:47,128 由于在 2 点的导数不等于 0, 40 00:01:47,190 --> 00:01:50,081 所以它就不是极小值,局部极小值, 41 00:01:50,081 --> 00:01:53,112 也不是局部极大值, 42 00:01:53,112 --> 00:01:58,112 所以可以说,由于 f'(2) 43 00:01:59,240 --> 00:02:02,514 f'(2) 不等于 0, 44 00:02:02,514 --> 00:02:07,411 这个,我们说 f, 我这样写, 45 00:02:07,411 --> 00:02:12,411 f 在 x 等于 2 处,既没达到极小值, 46 00:02:14,114 --> 00:02:16,274 局部极小值,这样说更好, 47 00:02:16,274 --> 00:02:19,535 局部极小, 48 00:02:19,535 --> 00:02:23,045 也没有达到局部极大值。 49 00:02:23,045 --> 00:02:26,324 50 00:02:26,324 --> 00:02:29,064 好的,下一题。 51 00:02:29,064 --> 00:02:32,942 计算常数 m 和 b 的值, 52 00:02:32,942 --> 00:02:37,487 使得 y 等于 mx 加 b 是微分方程的一个解 53 00:02:37,487 --> 00:02:39,583 54 00:02:39,583 --> 00:02:41,905 这道题有趣 55 00:02:41,905 --> 00:02:44,078 我们来,这样吧, 我们先把所有已知条件都写下来 56 00:02:44,078 --> 00:02:47,257 然后再考虑 y 等于 mx 加 b 57 00:02:47,257 --> 00:02:49,903 是微分方程的一个解这个条件。 58 00:02:49,903 --> 00:02:54,507 我们已经知道, 59 00:02:54,507 --> 00:02:58,939 dy/dx 等于 2x 减 y, 60 00:02:58,939 --> 00:03:00,273 是已知条件。 61 00:03:00,273 --> 00:03:02,281 我们也知道二阶导数, 62 00:03:02,281 --> 00:03:07,281 y 对 x 的二阶导数,等于 63 00:03:07,519 --> 00:03:12,519 2 减 dy/dx, 64 00:03:12,824 --> 00:03:14,333 这是我们在 b 小题中得出的结论。 65 00:03:14,333 --> 00:03:17,269 那么,我们可以将它表示成 66 00:03:17,269 --> 00:03:18,911 我们看,可以写为 67 00:03:18,911 --> 00:03:22,599 2 减 2x 加 y,通过代换 68 00:03:22,599 --> 00:03:25,375 就是把它代换进来 69 00:03:25,375 --> 00:03:27,826 那么这是 2 减 2x 加 y, 70 00:03:27,826 --> 00:03:29,282 我这么写, 71 00:03:29,282 --> 00:03:33,603 72 00:03:33,603 --> 00:03:35,785 73 00:03:35,785 --> 00:03:39,081 74 00:03:39,081 --> 00:03:42,189 75 00:03:42,189 --> 00:03:44,513 76 00:03:44,513 --> 00:03:48,924 77 00:03:48,924 --> 00:03:50,547 78 00:03:50,547 --> 00:03:54,996 79 00:03:54,996 --> 00:03:57,362 80 00:03:57,362 --> 00:04:00,007 81 00:04:00,007 --> 00:04:01,576 82 00:04:01,576 --> 00:04:02,842 83 00:04:02,842 --> 00:04:03,654 84 00:04:03,654 --> 00:04:06,864 85 00:04:06,864 --> 00:04:09,460 86 00:04:09,460 --> 00:04:12,163 87 00:04:12,163 --> 00:04:14,233 88 00:04:14,233 --> 00:04:16,074 89 00:04:16,074 --> 00:04:19,177 90 00:04:19,177 --> 00:04:21,009 91 00:04:21,009 --> 00:04:23,549 92 00:04:23,549 --> 00:04:25,582 93 00:04:25,582 --> 00:04:28,592 94 00:04:28,592 --> 00:04:31,350 95 00:04:31,350 --> 00:04:33,890 96 00:04:33,890 --> 00:04:37,317 97 00:04:37,317 --> 00:04:41,230 98 00:04:41,230 --> 00:04:45,391 99 00:04:45,391 --> 00:04:50,204 100 00:04:50,204 --> 00:04:55,204 101 00:04:55,546 --> 00:04:57,950 102 00:04:57,950 --> 00:05:00,806 103 00:05:00,806 --> 00:05:03,453 104 00:05:03,453 --> 00:05:05,542 105 00:05:05,542 --> 00:05:08,317 106 00:05:08,317 --> 00:05:12,149 107 00:05:12,149 --> 00:05:13,717 108 00:05:13,717 --> 00:05:15,220 109 00:05:15,220 --> 00:05:16,032 110 00:05:16,032 --> 00:05:19,011 111 00:05:19,011 --> 00:05:22,299 112 00:05:22,299 --> 00:05:25,120 113 00:05:25,120 --> 00:05:30,120 114 00:05:30,832 --> 00:05:34,942 115 00:05:34,942 --> 00:05:38,158 116 00:05:38,158 --> 00:05:40,933 117 00:05:40,933 --> 00:05:43,497 118 00:05:43,497 --> 00:05:46,285 119 00:05:46,285 --> 00:05:48,688 120 00:05:48,688 --> 00:05:52,531 121 00:05:52,531 --> 00:05:56,455 122 00:05:56,455 --> 00:05:58,320 123 00:05:58,320 --> 00:06:01,342 124 00:06:01,342 --> 00:06:05,152 125 00:06:05,152 --> 00:06:07,328 126 00:06:07,328 --> 00:06:09,973 127 00:06:09,973 --> 00:06:10,952 128 00:06:10,952 --> 00:06:14,572 129 00:06:14,572 --> 00:06:16,819 130 00:06:16,819 --> 00:06:19,717 131 00:06:19,717 --> 00:06:21,761 132 00:06:21,761 --> 00:06:24,005 133 00:06:24,005 --> 00:06:26,007 134 00:06:26,007 --> 00:06:28,260 135 00:06:28,260 --> 00:06:29,650 136 00:06:29,650 --> 00:06:32,339 137 00:06:32,339 --> 00:06:35,701 138 00:06:35,701 --> 00:06:37,057 139 00:06:37,057 --> 00:06:39,867 140 00:06:39,867 --> 00:06:42,119 141 00:06:42,119 --> 00:06:44,569 142 00:06:44,569 --> 00:06:47,669 143 00:06:47,669 --> 00:06:49,666 144 00:06:49,666 --> 00:06:52,162 145 00:06:52,162 --> 00:06:54,484 146 00:06:54,484 --> 00:06:59,255 147 00:06:59,255 --> 00:07:01,143 148 00:07:01,143 --> 00:07:02,725 149 00:07:02,725 --> 00:07:05,632 150 00:07:05,632 --> 00:07:07,027 151 00:07:07,027 --> 00:07:09,263 152 00:07:09,263 --> 00:07:11,300 153 00:07:11,300 --> 00:07:14,356 154 00:07:14,356 --> 00:07:17,717 155 00:07:17,717 --> 00:07:20,405 156 00:07:20,405 --> 00:07:22,727 157 00:07:22,727 --> 00:07:25,548 158 00:07:25,548 --> 00:07:28,202 159 00:07:28,202 --> 00:07:33,202 160 00:07:33,267 --> 00:07:36,666 161 00:07:36,666 --> 00:07:39,174 162 00:07:39,174 --> 00:07:42,680 163 00:07:42,680 --> 00:07:46,268 164 00:07:46,268 --> 00:07:49,240 165 00:07:49,240 --> 00:07:51,202 166 00:07:51,202 --> 00:07:53,570 167 00:07:53,570 --> 00:07:55,356 168 00:07:55,356 --> 00:07:57,402 169 00:07:57,402 --> 00:07:59,730