0:00:00.239,0:00:04.424 c 小题,假设 y 等于 f(x) 是微分方程 0:00:04.424,0:00:07.040 在初始条件 f(2) = 3 时的特解。 0:00:07.040,0:00:11.486 0:00:11.486,0:00:15.714 那么 f 在 x 等于 2 处是局部极大值? 0:00:15.714,0:00:18.767 还是局部极小值?或者都不是? 0:00:18.767,0:00:20.889 验证你的结论。 0:00:20.889,0:00:22.199 好的,若要考虑 0:00:22.199,0:00:24.258 局部极小或极大值, 0:00:24.258,0:00:26.706 可以看看这一点的导数。 0:00:26.706,0:00:28.633 如果等于 0,那么这里就有可能是 0:00:28.633,0:00:30.063 0:00:30.063,0:00:32.549 有可能是局部极大或极小值, 0:00:32.549,0:00:34.751 如果不等于 0,那么都不是。 0:00:34.751,0:00:36.114 而如果确实等于 0, 0:00:36.114,0:00:37.705 我们还要判断是极大值还是极小值, 0:00:37.705,0:00:40.845 看看二阶导数算出来是正是负,就能判断。 0:00:40.845,0:00:42.360 我们回到这一题, 0:00:42.360,0:00:45.675 我们要计算 f' 0:00:45.675,0:00:49.314 我们要计算的是 f'—— 0:00:49.314,0:00:53.142 f'(2) 等于什么。 0:00:53.142,0:00:56.712 那么我们知道 f'(x) 0:00:56.712,0:01:01.576 f'(x),也就是 dy/dx, 0:01:01.576,0:01:05.001 它等于 2x 减 y。 0:01:05.001,0:01:06.982 从上一题就能看到。 0:01:06.982,0:01:10.028 所以 f'(2),我这样写 0:01:10.028,0:01:14.184 f'(2) 就等于 0:01:14.184,0:01:16.064 2 乘以 2, 0:01:16.064,0:01:19.121 2 乘以 2 减去 0:01:19.121,0:01:21.761 x 等于 2 时 y 的值。 0:01:21.761,0:01:24.668 我们知道 x 等于 2 时 y 的值吗? 0:01:24.668,0:01:26.873 当然,这里已经给出了。 0:01:26.873,0:01:29.056 y 等于 f(x), 0:01:29.056,0:01:31.029 当 x 等于 2, 0:01:31.029,0:01:32.664 当 x 等于 2 时, 0:01:32.664,0:01:35.197 y 等于 3, 0:01:35.197,0:01:37.937 所以是 2 乘以 2 减 3。 0:01:37.937,0:01:40.653 那么它就等于 4 减 3,等于 1 0:01:40.653,0:01:42.128 0:01:42.128,0:01:47.128 由于在 2 点的导数不等于 0, 0:01:47.190,0:01:50.081 所以它就不是极小值,局部极小值, 0:01:50.081,0:01:53.112 也不是局部极大值, 0:01:53.112,0:01:58.112 所以可以说,由于 f'(2) 0:01:59.240,0:02:02.514 f'(2) 不等于 0, 0:02:02.514,0:02:07.411 这个,我们说 f,[br]我这样写, 0:02:07.411,0:02:12.411 f 在 x 等于 2 处,既没达到极小值, 0:02:14.114,0:02:16.274 局部极小值,这样说更好, 0:02:16.274,0:02:19.535 局部极小, 0:02:19.535,0:02:23.045 也没有达到局部极大值。 0:02:23.045,0:02:26.324 0:02:26.324,0:02:29.064 好的,下一题。 0:02:29.064,0:02:32.942 计算常数 m 和 b 的值, 0:02:32.942,0:02:37.487 使得 y 等于 mx 加 b 是微分方程的一个解 0:02:37.487,0:02:39.583 0:02:39.583,0:02:41.905 这道题有趣 0:02:41.905,0:02:44.078 我们来,这样吧,[br]我们先把所有已知条件都写下来 0:02:44.078,0:02:47.257 然后再考虑 y 等于 mx 加 b 0:02:47.257,0:02:49.903 是微分方程的一个解这个条件。 0:02:49.903,0:02:54.507 我们已经知道, 0:02:54.507,0:02:58.939 dy/dx 等于 2x 减 y, 0:02:58.939,0:03:00.273 是已知条件。 0:03:00.273,0:03:02.281 我们也知道二阶导数, 0:03:02.281,0:03:07.281 y 对 x 的二阶导数,等于 0:03:07.519,0:03:12.519 2 减 dy/dx, 0:03:12.824,0:03:14.333 这是我们在 b 小题中得出的结论。 0:03:14.333,0:03:17.269 那么,我们可以将它表示成 0:03:17.269,0:03:18.911 我们看,可以写为 0:03:18.911,0:03:22.599 2 减 2x 加 y,通过代换 0:03:22.599,0:03:25.375 就是把它代换进来 0:03:25.375,0:03:27.826 那么这是 2 减 2x 加 y, 0:03:27.826,0:03:29.282 我这么写, 0:03:29.282,0:03:33.603 0:03:33.603,0:03:35.785 0:03:35.785,0:03:39.081 0:03:39.081,0:03:42.189 0:03:42.189,0:03:44.513 0:03:44.513,0:03:48.924 0:03:48.924,0:03:50.547 0:03:50.547,0:03:54.996 0:03:54.996,0:03:57.362 0:03:57.362,0:04:00.007 0:04:00.007,0:04:01.576 0:04:01.576,0:04:02.842 0:04:02.842,0:04:03.654 0:04:03.654,0:04:06.864 0:04:06.864,0:04:09.460 0:04:09.460,0:04:12.163 0:04:12.163,0:04:14.233 0:04:14.233,0:04:16.074 0:04:16.074,0:04:19.177 0:04:19.177,0:04:21.009 0:04:21.009,0:04:23.549 0:04:23.549,0:04:25.582 0:04:25.582,0:04:28.592 0:04:28.592,0:04:31.350 0:04:31.350,0:04:33.890 0:04:33.890,0:04:37.317 0:04:37.317,0:04:41.230 0:04:41.230,0:04:45.391 0:04:45.391,0:04:50.204 0:04:50.204,0:04:55.204 0:04:55.546,0:04:57.950 0:04:57.950,0:05:00.806 0:05:00.806,0:05:03.453 0:05:03.453,0:05:05.542 0:05:05.542,0:05:08.317 0:05:08.317,0:05:12.149 0:05:12.149,0:05:13.717 0:05:13.717,0:05:15.220 0:05:15.220,0:05:16.032 0:05:16.032,0:05:19.011 0:05:19.011,0:05:22.299 0:05:22.299,0:05:25.120 0:05:25.120,0:05:30.120 0:05:30.832,0:05:34.942 0:05:34.942,0:05:38.158 0:05:38.158,0:05:40.933 0:05:40.933,0:05:43.497 0:05:43.497,0:05:46.285 0:05:46.285,0:05:48.688 0:05:48.688,0:05:52.531 0:05:52.531,0:05:56.455 0:05:56.455,0:05:58.320 0:05:58.320,0:06:01.342 0:06:01.342,0:06:05.152 0:06:05.152,0:06:07.328 0:06:07.328,0:06:09.973 0:06:09.973,0:06:10.952 0:06:10.952,0:06:14.572 0:06:14.572,0:06:16.819 0:06:16.819,0:06:19.717 0:06:19.717,0:06:21.761 0:06:21.761,0:06:24.005 0:06:24.005,0:06:26.007 0:06:26.007,0:06:28.260 0:06:28.260,0:06:29.650 0:06:29.650,0:06:32.339 0:06:32.339,0:06:35.701 0:06:35.701,0:06:37.057 0:06:37.057,0:06:39.867 0:06:39.867,0:06:42.119 0:06:42.119,0:06:44.569 0:06:44.569,0:06:47.669 0:06:47.669,0:06:49.666 0:06:49.666,0:06:52.162 0:06:52.162,0:06:54.484 0:06:54.484,0:06:59.255 0:06:59.255,0:07:01.143 0:07:01.143,0:07:02.725 0:07:02.725,0:07:05.632 0:07:05.632,0:07:07.027 0:07:07.027,0:07:09.263 0:07:09.263,0:07:11.300 0:07:11.300,0:07:14.356 0:07:14.356,0:07:17.717 0:07:17.717,0:07:20.405 0:07:20.405,0:07:22.727 0:07:22.727,0:07:25.548 0:07:25.548,0:07:28.202 0:07:28.202,0:07:33.202 0:07:33.267,0:07:36.666 0:07:36.666,0:07:39.174 0:07:39.174,0:07:42.680 0:07:42.680,0:07:46.268 0:07:46.268,0:07:49.240 0:07:49.240,0:07:51.202 0:07:51.202,0:07:53.570 0:07:53.570,0:07:55.356 0:07:55.356,0:07:57.402 0:07:57.402,0:07:59.730