世界上最冷的材料不在南極洲,
也不在聖母峰的頂端
或埋在冰河當中。
答案在物理實驗室中:
保存在只比絕對零度
再高一點點的氣體雲。
那種溫度比你的冰箱還要冷
三億九千五百萬倍,
比液態氮還要冷一億倍,
比外太空還要冷四百萬倍。
這麼低的溫度,可說是一扇窗,
讓科學家能看見物質的內在運作,
也讓工程師能建造出
極敏感的儀器,
讓我們能更了解各種事物,
從我們在地球上的確切位置,
到宇宙中最能到達的
最遠之處發生了什麼事。
我們要如何創造出
這種極端的溫度?
簡言之,就是減慢在移動的微粒。
當我們談到溫度時,
其實我們是在談運動。
原子構成固體、
液體,
和氣體,
它們時時刻刻都在移動。
當原子的移動速度更快時,
我們就會覺得該物質很熱。
當原子的速度較慢,
我們就會感到冷。
在日常生活中,若要讓
一個熱的物體或氣體變冷,
我們會把它放到比較冷的
環境中,比如放入冰箱。
在熱物體中的一些原子運動
就會被轉換到周圍環境,
物體就會冷卻下來。
但這有一個限制:
即使是外太空也沒有
冷到可以創造出超低溫。
所以,科學家換了一種方式,
想辦法直接將原子減速,
用激光束就可做到。
在大部分的情況下,
激光束中的能量會把東西加溫。
但若能非常精確地使用它,
激光束的動量可以拖住
移動的原子,讓它們冷卻下來。
有種裝置叫做磁光陷阱,
就是用這個原理。
原子被注入到真空室當中,
裡面有個磁場會把它們拉向中心。
一道激光束瞄準真空室的中間,
調整到正確的頻率,
原子會朝激光束移動,吸收
激光束的光子,接著緩慢下來。
這種減速效應,
是來自動量的轉換,
在原子和光子間的轉換。
總共用六道光束,
以垂直方式排列,
能夠確保向任何方向
移動的原子都會被攔截下來。
在中心,也就是光束交錯的地方,
原子緩慢移動,好像被困在
濃稠的液體中似的——
發明這項效應的研究者
將它稱為「光蜜糖」。
像這樣的磁光陷阱
能將原子冷卻到僅幾 microkelvin
(接近絕零度),
大約是攝氏 -273 度。
這項技術是八○年代時
開發出來的,
負責開發它的科學家們
在 1997 年因為這項發現
而贏得了諾貝爾物理獎。
在那之後,雷射冷卻就一直
被改良,以達到更低的溫度。
但,為什麼會想要
把原子冷卻到那麼低溫?
首先,冷原子是非常好的偵測器。
它們的能量非常低,
所以會對環境中的波動非常敏感。
所以它們會被用在找尋
地底石油以及礦床的裝置中,
它們也能被用來製做
極精準的原子鐘,
比如用在全球定位衛星上的鐘。
第二,冷原子有極大的潛能,
可以探究物理的邊境。
它們極度敏感,因此,
未來的太空探測器會考慮
用它們來偵測重力波。
在研究原子和亞原子現象時,
它們也很有用,
這類研究需要測量
非常小的原子能量波動。
常溫下,當原子速度
約為每秒數百公尺時,
這類波動會被掩蓋而難以測量。
雷射冷卻能讓原子慢下來,
速度變成只有每秒幾公分——
這樣就足以讓原子量子效應
所造成的運動變明顯了。
極冷的原子已經讓科學家
可以研究一些現象,
比如玻色—愛因斯坦凝聚,
在這種現象中,原子
被冷卻到幾乎是絕對零度,
變成物質的一種罕見新狀態。
研究者還在持續努力
了解物理法則,
試圖解開宇宙的謎,
這時,最冷的原子
就會是他們的好幫手。