0:00:00.890,0:00:04.940 Сега ще ти покажа как се преобразува [br]обикновена дроб в десетична. 0:00:04.940,0:00:06.990 Ако имаме време, може би [br]ще се научим и как 0:00:06.990,0:00:08.730 да превърнем десетична дроб в обикновена. 0:00:08.730,0:00:12.490 Нека да започнем с един [br]простичък по мое мнение пример. 0:00:12.490,0:00:15.210 Да започнем с обикновената дроб 1/2. 0:00:15.210,0:00:17.390 Искам да я превърна в десетична дроб. 0:00:17.390,0:00:20.170 Методът, който искам да ти покажа, [br]е общовалиден. 0:00:20.170,0:00:22.850 Това, което правим, е да вземем [br]знаменателя и 0:00:22.850,0:00:24.530 да го разделим на числителя. 0:00:24.530,0:00:25.510 Да видим как става. 0:00:25.510,0:00:32.270 Вземаме знаменателя, който е 2,[br]и го разделяме на числителя 1. 0:00:32.280,0:00:34.110 Сигурно се чудиш как да разделиш 2 на 1? 0:00:34.110,0:00:37.010 Ако си спомняш от урока [br]за делене на десетични дроби, 0:00:37.010,0:00:40.220 можем да добавим десетична запетая [br]тук и няколко поредни нули. 0:00:40.220,0:00:42.880 В действителност не променяме [br]стойността на това число, 0:00:42.880,0:00:45.260 но го правим малко по-подробно. 0:00:45.260,0:00:46.700 Слагаме десетичната запетая тук. 0:00:48.080,0:00:50.920 Две съдържа ли се в 1? 0:00:51.500,0:00:54.560 Не, но 2 се съдържа в 10 0:00:55.880,0:00:59.060 2 се съдържа в 10 пет пъти. 0:00:59.060,0:01:00.050 5 по 2 е 10. 0:01:00.050,0:01:01.150 Остатък 0. 0:01:01.150,0:01:03.735 Готово. 0:01:07.030,0:01:08.510 И така, 1/2 е равно на 0,5. 0:01:12.050,0:01:14.620 Да вземем нещо по-трудно. 0:01:14.620,0:01:16.000 Да разгледаме 1/3. 0:01:16.000,0:01:18.950 Взимаме знаменателя 3 и го делим 0:01:18.950,0:01:20.740 на числителя 1. 0:01:20.740,0:01:24.780 И сега ще изпиша още няколко поредни 0 . 0:01:24.780,0:01:27.800 3 не се съдържа в 1, но 0:01:27.800,0:01:30.150 3 се съдържа в 10 три пъти. 0:01:30.150,0:01:32.452 3 по 3 е равно на 9. 0:01:32.452,0:01:35.720 Нека да извадим, остава 1, смъкваме долу една 0. 0:01:35.720,0:01:37.700 3 се съдържа в 10 три пъти. 0:01:37.700,0:01:39.700 Всъщност тази десетична запетая е точно тук. 0:01:39.700,0:01:42.710 3 по 3 е равно на 9. 0:01:42.710,0:01:43.930 Изясни ли ти се механизмът вече? 0:01:43.930,0:01:45.070 Продължаваме по същия начин. 0:01:45.070,0:01:47.350 И получаваме 0,3333. 0:01:47.350,0:01:48.830 И така до безкрай. 0:01:48.830,0:01:52.160 И как да запишем това?[br]Очевидно не можем да напишем 0:01:52.160,0:01:54.020 безкрайно много тройки. 0:01:54.020,0:02:00.430 Можем просто да запишем нула цяло...[br]Е, можем да го изпишем като 0,33 в период, 0:02:00.430,0:02:03.060 което означава, че 0,33 продължава до безкрай. 0:02:03.060,0:02:06.960 Или можеш просто да го наречеш 0,3 в период. 0:02:06.960,0:02:08.630 Но по-често се среща този запис. 0:02:08.630,0:02:09.840 Може и да греша. 0:02:09.840,0:02:12.410 Но тази линия отгоре над десетичната дроб означава, 0:02:12.410,0:02:17.320 че този модел се повтаря до безкрайност. 0:02:17.320,0:02:25.210 И така 1/3 е равна на 0,33333 и това продължава до безкрай. 0:02:25.210,0:02:29.770 Друг начин да се напише, че 0,33 е в период. 0:02:29.770,0:02:33.400 Нека да разгледаме няколко по-трудни примера, 0:02:33.400,0:02:35.060 които се решават по същия модел 0:02:35.060,0:02:36.890 Нека да разгледаме няколко по-странни числа. 0:02:40.470,0:02:41.890 Нека да вземем една неправилна дроб. 0:02:41.890,0:02:49.050 Да речем 17/9 0:02:49.050,0:02:50.160 И така, тук става интересно. 0:02:50.160,0:02:52.260 Числителят е по-голям от знаменателя. 0:02:52.260,0:02:54.200 Значи ще получим число по-голямо от 1. 0:02:54.200,0:02:55.270 Нека го сметнем. 0:02:55.270,0:03:00.586 Взимаме 9 и го разделяме на 17. 0:03:00.586,0:03:06.000 Нека да добавим няколко нули след десетичната запетая. 0:03:06.000,0:03:08.730 9 се съдържа в 17 само веднъж. 0:03:08.730,0:03:11.260 1 път по 9 е 9. 0:03:11.260,0:03:14.040 17 минус 9 е 8. 0:03:14.040,0:03:16.240 Сваляме долу една 0. 0:03:16.240,0:03:20.080 9 се съдържа в 80... [br]е, знаем, че 9 по 9 е 81, 0:03:20.080,0:03:21.830 така че тук се съдържа само 8 пъти, 0:03:21.830,0:03:23.230 защото не достига за девет пъти. 0:03:23.230,0:03:27.010 8 пъти по 9 е 72. 0:03:27.010,0:03:29.560 80 минус 72 е 8. 0:03:29.560,0:03:30.770 Сваляме следващата 0. 0:03:30.770,0:03:32.260 Гледам, че отново се образува период. 0:03:32.260,0:03:35.990 9 се съдържа осем пъти в 80. 0:03:35.990,0:03:40.820 8 по 9 е 72. 0:03:40.820,0:03:44.350 И ясно е, че така продължаваме до безкрай и 0:03:44.350,0:03:46.790 всеки път получаваме осмици. 0:03:46.790,0:03:53.740 Или 17 разделено на 9 е 1,88, където 0,88 0:03:53.740,0:03:56.080 се повтаря до безкрай. 0:03:56.080,0:03:59.200 Или ако искаме да закръглим числото, казваме 0:03:59.200,0:04:01.430 това е равно на 1 цяло... 0:04:01.430,0:04:02.860 зависи до колко искаме да закръглим 0:04:02.860,0:04:05.990 Можем да кажем приблизително 1,89 0:04:05.990,0:04:07.480 Или можем да закръглим по друг начин. 0:04:07.480,0:04:09.310 Аз го закръглих до стотната. 0:04:09.310,0:04:11.350 Но това е всъщност верен отговор. 0:04:11.350,0:04:15.126 17/9 е равно на 1,88 0:04:15.126,0:04:17.380 Трябва всъщност да направя отделен модул, но как да запишем това 0:04:17.380,0:04:20.730 като смесено число? 0:04:20.730,0:04:23.030 Е, всъщност, ще го направя това отделно. 0:04:23.030,0:04:24.390 Не искам да те обърквам сега. 0:04:24.390,0:04:25.380 Нека да разгледаме още няколко примера. 0:04:28.560,0:04:29.980 Нека да вземем едно наистина странно число. 0:04:29.980,0:04:34.360 Да преобразуваме 17/93 0:04:34.360,0:04:36.710 На каква десетична дроб се равнява това? 0:04:36.710,0:04:39.130 Е, работим отново по същия модел. 0:04:39.130,0:04:45.630 93 се събира в... Чертая една дълга линия, защото 0:04:45.630,0:04:47.930 не съм сигурен колко знака ще има след запетаята. 0:04:50.570,0:04:53.220 И запомни, че винаги делим знаменателя 0:04:53.220,0:04:54.930 на числителя. 0:04:54.930,0:04:56.950 Това ме объркваше доста пъти, защото обикновено 0:04:56.950,0:04:59.630 делим по-голямо число на по-малкото. 0:04:59.630,0:05:02.580 И така, 93 се съдържа 0 пъти в 17. 0:05:02.580,0:05:04.080 Слагаме десетична запетая. 0:05:04.080,0:05:05.990 Колко пъти се съдържа 93 в 170? 0:05:05.990,0:05:07.270 Веднъж. 0:05:07.270,0:05:11.410 1 по 93 е 93. 0:05:11.410,0:05:14.370 170 минус 93 е 77. 0:05:17.980,0:05:20.360 Сваляме една нула. 0:05:20.360,0:05:23.700 Колко пъти се съдържа 93 в 770? 0:05:23.700,0:05:24.660 Нека да проверим. 0:05:24.660,0:05:29.120 Мисля, че приблизително 8 пъти. 0:05:29.120,0:05:33.330 8 по 3 е 24. 0:05:33.330,0:05:35.970 8 по 9 е 72. 0:05:35.970,0:05:39.730 Плюс 2 е 74. 0:05:39.730,0:05:42.186 И нека да извадим. 0:05:42.186,0:05:43.990 10 и 6. 0:05:43.990,0:05:46.710 Равно на 26. 0:05:46.710,0:05:47.760 Сваляме още една 0. 0:05:47.760,0:05:52.800 93 се съдържа в 26 приблизително 2 пъти. 0:05:52.800,0:05:57.020 2 по 3 е 6. 0:05:57.020,0:05:58.704 18. 0:05:58.704,0:05:59.920 Това е 74. 0:06:03.120,0:06:03.930 0. 0:06:03.930,0:06:06.380 И така можем да продължим. 0:06:06.380,0:06:08.030 Можем да добавяме още след десетичната запетая. 0:06:08.030,0:06:10.020 Може да го правиш, докато не ти писне. 0:06:10.020,0:06:12.090 Но ако все пак искаш някаква точност, 0:06:12.090,0:06:17.170 може да кажеш, че 17 се съдържа в 93 нула цяло... 0:06:17.170,0:06:23.490 или по-скоро 17/93 е равно на 0,182... 0:06:23.490,0:06:25.020 и така нататък, ще има още цифри след 2. 0:06:25.020,0:06:27.170 Може да продължиш да смяташ, ако желаеш. 0:06:27.170,0:06:28.650 Ако си на изпит, в условието на задачата ще е упоменато 0:06:28.650,0:06:29.640 до колко знака след запетаята трябва да спреш. 0:06:29.640,0:06:31.650 Обикновено закръгляй до стотната или 0:06:31.650,0:06:33.610 хилядната. 0:06:33.610,0:06:36.550 И нека сега да опитаме да преобразуваме по друг начин. 0:06:36.550,0:06:37.830 от десетична дроб в обикновена. 0:06:37.830,0:06:40.090 Всъщност смятам, че 0:06:40.090,0:06:42.300 това е много по-лесно. 0:06:42.300,0:06:49.810 Ако те попитам колко е 0,035 като обикновена дроб, 0:06:49.810,0:06:57.315 ще ми отговориш "0,035 е същото като"...[br]Нека го запишем по този начин... 0:06:57.315,0:07:02.140 Това е същото като... 0:07:02.140,0:07:06.300 Хм, 035... всъщност не трябва да пиша 035. 0:07:06.300,0:07:10.700 Това е същото като 35/1000. 0:07:10.700,0:07:14.120 Може би искаш да ме питаш: [br]Сал, откъде знаеш, че е 35/1000? 0:07:14.120,0:07:18.590 Ами защото имаме 3 цифри след...[br]Това тук е мястото на десетите. 0:07:18.590,0:07:20.230 Десетите, не десетиците. 0:07:20.230,0:07:21.360 Това е стотна. 0:07:21.360,0:07:23.230 Това е позицията на хилядните. 0:07:23.230,0:07:25.890 И така имаме 3 цифри след запетаята. 0:07:25.890,0:07:29.260 тоест това е 35 хилядни. 0:07:29.260,0:07:38.650 Ако числото ни беше например 0,030, 0:07:38.650,0:07:40.140 има няколко начина, по които да го преобразуваме. 0:07:40.140,0:07:43.520 Можем да кажем, имаме 3 цифри, значи това са хилядни. 0:07:43.570,0:07:48.240 Значи това е същото като 30/1000. 0:07:48.610,0:07:55.550 Но можем да кажем и че 0,030 е равно на 0:07:55.550,0:08:02.710 0,03, защото последната 0 не променя числото. 0:08:02.710,0:08:05.920 Ако имаме 0,03, значи говорим за стотни. 0:08:05.920,0:08:11.100 И да запишем числото като 3/100. 0:08:11.100,0:08:13.160 И сега да те попитам: тези двете еднакви ли са? 0:08:16.330,0:08:16.670 Ами, да. 0:08:16.670,0:08:17.680 Със сигурност са. 0:08:17.680,0:08:20.065 Ако разделим числителя и знаменателя 0:08:20.065,0:08:24.890 в тези дроби на 10, ще получим 3/100. 0:08:24.890,0:08:26.220 Нека да се върнем отново на този пример. 0:08:26.220,0:08:27.550 Готови ли сме? 0:08:27.550,0:08:30.120 35/1000 вярно ли е записано? 0:08:30.120,0:08:31.660 Е, да, това е обикновена дроб. 0:08:31.660,0:08:32.584 35/1000 0:08:32.584,0:08:35.440 Но ако искаме да я опростим, тя ще изглежда ето така: 0:08:35.440,0:08:38.530 делим числителя и знаменателя на 5. 0:08:38.530,0:08:40.860 И сега опростяваме. 0:08:40.860,0:08:47.280 Това е равно на 7/200 0:08:47.280,0:08:51.020 А сега, ако искаме да преобразуваме 7/200 в десетична дроб, 0:08:51.020,0:08:54.150 използвайки техниката, която приложихме по-горе, да видим колко пъти 200 0:08:54.150,0:08:56.120 се съдържа в 7 и да го решим. 0:08:56.120,0:09:00.170 Би следвало да получим 0,035. 0:09:00.170,0:09:02.650 Ще оставя това на теб, за да се упражниш. 0:09:02.650,0:09:05.370 Да се надяваме, че сега имаш поне бегла представа 0:09:05.370,0:09:09.320 за това как се превръщат обикновени дроби в десетични и може би и обратното. 0:09:09.320,0:09:11.840 Ако все пак не усещаш увереност, упражнявай се. 0:09:11.840,0:09:16.990 Аз ще опитам да запиша още някой и друг 0:09:16.990,0:09:18.880 пример по тази тема. 0:09:18.880,0:09:20.090 Наслаждавай се на упражненията.