1 00:00:00,371 --> 00:00:02,145 我们来介绍 2 00:00:02,145 --> 00:00:06,277 多项式的余数定理 3 00:00:06,277 --> 00:00:07,436 当我们往下看的时候 4 00:00:07,436 --> 00:00:09,315 一开始您可能觉得有点神奇 5 00:00:09,315 --> 00:00:11,415 但是在今后的视频中,我们会去证明它 6 00:00:11,415 --> 00:00:13,063 然后我们就明白,就像数学中的其他很多东西 7 00:00:13,063 --> 00:00:14,445 当您真正理解的时候 8 00:00:14,445 --> 00:00:16,923 或许它就不会显得那么神奇了 9 00:00:16,923 --> 00:00:19,469 那么什么是多项式的余数定理呢 10 00:00:19,469 --> 00:00:21,569 题目告诉我们,如果 11 00:00:21,569 --> 00:00:24,313 有一个多项式函数,f(x) 12 00:00:24,313 --> 00:00:27,793 这就是这个多项式 13 00:00:27,793 --> 00:00:29,557 多项式 14 00:00:29,557 --> 00:00:34,557 它来除以 15 00:00:34,923 --> 00:00:39,332 (x-a) 16 00:00:39,332 --> 00:00:43,890 那么余数 17 00:00:43,890 --> 00:00:46,103 从那个多项式 18 00:00:46,103 --> 00:00:49,916 的长除法我们就会得到答案为f(a) 19 00:00:49,916 --> 00:00:53,040 其结果将是 20 00:00:53,040 --> 00:00:56,887 f(a) 21 00:00:56,887 --> 00:00:59,330 我想这个看起来有点抽象 22 00:00:59,330 --> 00:01:02,727 我指的是f(x)以及f(x-a) 23 00:01:02,727 --> 00:01:05,409 我来把它说得具体一些 24 00:01:05,409 --> 00:01:10,409 我们来算f(x)等于多少 25 00:01:10,455 --> 00:01:11,737 我们来假设一个 26 00:01:11,737 --> 00:01:13,302 2次幂的多项式 27 00:01:13,302 --> 00:01:15,176 其实对所有的多项式其实都是成立的 28 00:01:15,176 --> 00:01:18,078 所以3x的平方 29 00:01:18,078 --> 00:01:21,139 减4x加7 30 00:01:21,139 --> 00:01:25,833 我们假设a等于,a等于1 31 00:01:25,833 --> 00:01:30,607 所以我们的除法就是 32 00:01:30,607 --> 00:01:33,886 变成我们要除以 33 00:01:33,886 --> 00:01:38,886 (x-1) 34 00:01:39,006 --> 00:01:44,006 所以a,在这个例子中,等于1 35 00:01:44,019 --> 00:01:45,890 现在来做多项式的长除法 36 00:01:45,890 --> 00:01:47,665 我建议您暂停视频 37 00:01:47,665 --> 00:01:49,635 如果您不熟悉长除法 38 00:01:49,635 --> 00:01:51,815 我建议您先去看之前那个视频 39 00:01:51,815 --> 00:01:53,327 因为我假设您已经 40 00:01:53,327 --> 00:01:55,223 知道怎么去做多项式的长除法 41 00:01:55,223 --> 00:01:57,983 3x^-4x+7 42 00:01:57,983 --> 00:01:59,477 除以(x-1) 43 00:01:59,477 --> 00:02:01,036 来计算余数是多少 44 00:02:01,036 --> 00:02:04,877 并且来看余数是不是等于f(1) 45 00:02:04,877 --> 00:02:06,422 假设您已经试过了 46 00:02:06,422 --> 00:02:07,978 我们现在来一起做 47 00:02:07,978 --> 00:02:12,978 我们的除数为(x-1) 48 00:02:13,379 --> 00:02:18,379 被除数为3x^2 49 00:02:18,752 --> 00:02:22,364 减4x+7 50 00:02:22,364 --> 00:02:24,907 好了,做一点多项式的长除法 51 00:02:24,907 --> 00:02:26,745 来开启您的一天是不错的方法 52 00:02:26,745 --> 00:02:27,456 我就是这样的 53 00:02:27,456 --> 00:02:29,172 我不知道您的早上以什么开始 54 00:02:29,172 --> 00:02:33,238 好了,我们来看x项 55 00:02:33,238 --> 00:02:34,728 x的最高幂次项 56 00:02:34,728 --> 00:02:36,585 我从最高幂次项开始 57 00:02:36,585 --> 00:02:39,453 那么x乘以什么得到3x的平方 58 00:02:39,453 --> 00:02:40,951 3x的平方是多少 59 00:02:40,951 --> 00:02:42,573 3x的平方就是3乘以x的平方 60 00:02:42,573 --> 00:02:46,387 所以我可以写下3x 61 00:02:46,387 --> 00:02:47,920 我可以写在 62 00:02:47,920 --> 00:02:49,700 x的一次方的位置 63 00:02:49,700 --> 00:02:53,750 3x乘以x是3x的平方 64 00:02:53,750 --> 00:02:57,822 3x乘以负1等于负3x 65 00:02:57,822 --> 00:03:01,486 现在来做减法 66 00:03:01,486 --> 00:03:04,454 这个和您通常做的长除法是一回事 67 00:03:04,454 --> 00:03:06,505 那么结果是什么 68 00:03:06,505 --> 00:03:09,488 3x的平方减3x的平方 69 00:03:09,488 --> 00:03:11,552 等于0 70 00:03:11,552 --> 00:03:14,237 这项相抵减 71 00:03:14,237 --> 00:03:16,584 这一项-4x 72 00:03:16,584 --> 00:03:18,332 要加3x,对吧 73 00:03:18,332 --> 00:03:19,720 因为负负得正 74 00:03:19,720 --> 00:03:22,012 负4x加3x 75 00:03:22,012 --> 00:03:25,367 得到负x 76 00:03:25,367 --> 00:03:27,504 我用新的颜色来做 77 00:03:27,504 --> 00:03:31,513 我们得到负x 78 00:03:31,513 --> 00:03:35,705 然后把7落下 79 00:03:35,705 --> 00:03:38,346 将您第一次学习长除法和这个做一个完全的比较 80 00:03:38,346 --> 00:03:40,713 也许您在3年级或者4年级学过 81 00:03:40,713 --> 00:03:42,565 我做的就是用3x来乘以这个 82 00:03:42,565 --> 00:03:44,813 您就得到3x平方减3x 83 00:03:44,813 --> 00:03:46,801 然后我再来做减法,被减数为3x平方 84 00:03:46,801 --> 00:03:49,255 减4x,然后就得到这个 85 00:03:49,255 --> 00:03:52,518 或者您可以说我用整个多项式 86 00:03:52,518 --> 00:03:55,856 来减除数然后就得到-x+7 87 00:03:55,856 --> 00:03:58,149 现在,-x+7里面有多少 88 00:03:58,149 --> 00:04:00,598 (x-1)呢 89 00:04:00,598 --> 00:04:02,098 x被负x除 90 00:04:02,098 --> 00:04:06,488 商负1,乘以x 91 00:04:06,488 --> 00:04:08,816 就是负x 92 00:04:08,816 --> 00:04:12,662 负1乘以负1等于正1 93 00:04:12,662 --> 00:04:15,131 然后我们又要来做减法 94 00:04:15,131 --> 00:04:16,357 我们要来减去这个 95 00:04:16,357 --> 00:04:18,660 然后我们就得到余数了 96 00:04:18,660 --> 00:04:21,616 所以负x减去负x 97 00:04:21,616 --> 00:04:24,713 就等于负x加x 98 00:04:24,713 --> 00:04:26,847 它们相加等于0 99 00:04:26,847 --> 00:04:27,939 现在落下7 100 00:04:27,939 --> 00:04:29,104 然后7加1 101 00:04:29,104 --> 00:04:30,188 不要忘记括弧外面有负号 102 00:04:30,188 --> 00:04:31,329 所以如果您将负号分配进来 103 00:04:31,329 --> 00:04:33,144 那就等于负1 104 00:04:33,144 --> 00:04:35,880 7减去1等于6 105 00:04:35,880 --> 00:04:39,709 所以您的余数为6 106 00:04:39,709 --> 00:04:40,982 一种方法去想 107 00:04:40,982 --> 00:04:45,442 您可以说,算了 108 00:04:45,442 --> 00:04:46,797 我还是留给将来的视频课来解释 109 00:04:46,797 --> 00:04:50,612 这个就是余数 110 00:04:50,612 --> 00:04:52,128 您知道当您到余数这一步的时候 111 00:04:52,128 --> 00:04:54,609 这就是对长除法做了一个复习 112 00:04:54,609 --> 00:04:57,128 也就是当您得到一个低次幂的时候 113 00:04:57,128 --> 00:04:58,676 在这里,我想您可以这么来叫它 114 00:04:58,676 --> 00:05:01,058 是一个零次幂的多项式 115 00:05:01,058 --> 00:05:04,225 这个比您实际上 116 00:05:04,225 --> 00:05:09,225 要除以的因子(x-1)的x次幂要低 117 00:05:09,680 --> 00:05:11,852 因为它比因子的幂次低,所以它就是余数了 118 00:05:11,852 --> 00:05:16,014 您不能再用这个余数去商任何数 119 00:05:16,014 --> 00:05:20,471 现在,就这个多项式余数定理 120 00:05:20,471 --> 00:05:23,538 如果它是正确的,因为我在这里只是任意选了一个例子而言 121 00:05:23,538 --> 00:05:26,108 这不是一个证明,而是仅仅是 122 00:05:26,108 --> 00:05:29,308 一种直观的方法 123 00:05:29,308 --> 00:05:32,009 让我们知道这个余数定理 124 00:05:32,009 --> 00:05:34,566 如果这个余数定理是正确的 125 00:05:34,566 --> 00:05:38,968 它告诉我们的是,在这个实例中 126 00:05:38,968 --> 00:05:42,727 f(1)应该等于6 127 00:05:42,727 --> 00:05:44,600 它应该等于这个余数 128 00:05:44,600 --> 00:05:45,555 现在来看看对不对 129 00:05:45,555 --> 00:05:48,838 它应该等于3乘以1的平方 130 00:05:48,838 --> 00:05:51,860 等于3,减4乘以1 131 00:05:51,860 --> 00:05:55,717 那么就是减4,再加7 132 00:05:55,717 --> 00:06:00,017 3减4等于负1再加7,的确是 133 00:06:00,017 --> 00:06:01,635 我们被其结果所鼓舞 134 00:06:01,635 --> 00:06:04,606 它真的就等于6 135 00:06:04,606 --> 00:06:07,604 所以,至少就这个特殊的例子而言 136 00:06:07,604 --> 00:06:09,082 看起来是正确的,它 137 00:06:09,082 --> 00:06:10,415 证明余数定理是对的 138 00:06:10,415 --> 00:06:12,365 但是这个定理的作用是,如果有人问 139 00:06:12,365 --> 00:06:15,111 "如果我用3x^-4x+7 除以 140 00:06:15,111 --> 00:06:16,986 (x-1) 的话,如果我只关心余数 141 00:06:16,986 --> 00:06:19,714 那么余数是什么?“ 142 00:06:19,714 --> 00:06:21,865 这里他们并不关心实际的商会是多少 143 00:06:21,865 --> 00:06:23,903 他们就只想知道余数,您可以说 144 00:06:23,903 --> 00:06:27,299 “你们看,在这个例子里,因为a是1 145 00:06:27,299 --> 00:06:28,361 我可以就把1代入 146 00:06:28,361 --> 00:06:30,764 我可以算出f(1),然后我得出答案是6 147 00:06:30,764 --> 00:06:32,068 我并不需要去做这个整个长除法过程 148 00:06:32,068 --> 00:06:34,104 我仅仅只需要去做这个步骤 149 00:06:34,104 --> 00:06:37,130 就可以算出余数“ 150 00:06:37,130 --> 00:06:38,820 也就是得出3x的平方减4x加7 151 00:06:38,820 --> 00:06:41,854 除以x-1的余数