1 99:59:59,999 --> 99:59:59,999 f(x)趋向于这个值 2 99:59:59,999 --> 99:59:59,999 下期视频再见 3 99:59:59,999 --> 99:59:59,999 下期视频我们会做一些例题 4 99:59:59,999 --> 99:59:59,999 不会超过给定的数 5 99:59:59,999 --> 99:59:59,999 之间的距离 6 99:59:59,999 --> 99:59:59,999 以及一些极限结论 7 99:59:59,999 --> 99:59:59,999 但这个定义是数学上严格精确的 8 99:59:59,999 --> 99:59:59,999 使之成立 9 99:59:59,999 --> 99:59:59,999 只要选这些x 10 99:59:59,999 --> 99:59:59,999 在我们讲这之前 你们知道的是 11 99:59:59,999 --> 99:59:59,999 在数学上的定义则是 12 99:59:59,999 --> 99:59:59,999 如果你们要学习高等的微积分知识 13 99:59:59,999 --> 99:59:59,999 如果你们觉着这看起来很复杂 14 99:59:59,999 --> 99:59:59,999 它会迷惑很多学生 15 99:59:59,999 --> 99:59:59,999 它是一个很“数学”的问题 16 99:59:59,999 --> 99:59:59,999 它确实是很合乎逻辑的 17 99:59:59,999 --> 99:59:59,999 定义非常的严格 18 99:59:59,999 --> 99:59:59,999 就可以确保函数值和极限值 19 99:59:59,999 --> 99:59:59,999 希望当用到实际的数字时 20 99:59:59,999 --> 99:59:59,999 当x趋向于这点时 21 99:59:59,999 --> 99:59:59,999 当取这些x值时 22 99:59:59,999 --> 99:59:59,999 很难理解 23 99:59:59,999 --> 99:59:59,999 我会用这个定义证明一些极限 24 99:59:59,999 --> 99:59:59,999 我想很多人 25 99:59:59,999 --> 99:59:59,999 我想要f(x)和极限值的距离 26 99:59:59,999 --> 99:59:59,999 我想要非常接近 27 99:59:59,999 --> 99:59:59,999 我有很深的感触 28 99:59:59,999 --> 99:59:59,999 或者说要进修数学 那么这是很重要的 29 99:59:59,999 --> 99:59:59,999 或者这个x 或者这个 30 99:59:59,999 --> 99:59:59,999 是0.000000001 31 99:59:59,999 --> 99:59:59,999 比如第三周你们就会用到 32 99:59:59,999 --> 99:59:59,999 视频时间快到了 33 99:59:59,999 --> 99:59:59,999 计算这些点处的f(x) 34 99:59:59,999 --> 99:59:59,999 这个定义 35 99:59:59,999 --> 99:59:59,999 这个定义会更好理解一些 36 99:59:59,999 --> 99:59:59,999 这个定义会运用在大多数微积分课程 37 99:59:59,999 --> 99:59:59,999 这个距离-- 38 99:59:59,999 --> 99:59:59,999 这时我仍可以给出一个x的范围 39 99:59:59,999 --> 99:59:59,999 那么f(x)和极限值的距离 40 99:59:59,999 --> 99:59:59,999 那时甚至还没学导数 41 00:00:00,900 --> 00:00:02,810 我来画一个函数 42 00:00:02,810 --> 00:00:04,490 对这个函数取极限会很有意思 43 00:00:04,490 --> 00:00:06,880 现在我就把它画出来 44 00:00:06,880 --> 00:00:08,390 之后我们会做一些练习 45 00:00:08,390 --> 00:00:11,870 这是y轴 这是x轴 46 00:00:11,870 --> 00:00:14,180 函数应该是这样的-- 47 00:00:14,180 --> 00:00:15,950 我尽量想一个简单一些的 48 00:00:15,950 --> 00:00:19,760 在大多数情况下它是条直线 49 00:00:19,760 --> 00:00:23,100 像这样 50 00:00:23,100 --> 00:00:27,080 在某一点有一个洞 51 00:00:27,080 --> 00:00:28,690 比如x=a这一点 没有定义 52 00:00:28,690 --> 00:00:32,030 我把这一点抹黑 这样就知道 53 00:00:32,030 --> 00:00:33,110 此处无定义 54 00:00:33,110 --> 00:00:38,780 这一点是x=a 55 00:00:38,780 --> 00:00:45,180 这是x轴 这是y=f(x)轴 56 00:00:45,180 --> 00:00:47,120 就简单的称之为y轴吧 57 00:00:47,120 --> 00:00:51,030 这条线是函数f(x) 58 00:00:51,030 --> 00:00:53,880 或者说是y=f(x) 59 00:00:53,880 --> 00:00:55,740 我们已经学习了一些极限的视频 60 00:00:55,740 --> 00:00:57,160 我想你们有一个大致的理解了 61 00:00:57,160 --> 00:00:59,850 这里要求求出x趋向于a时函数的极限 62 00:00:59,850 --> 00:01:04,020 假设这一点是L 63 00:01:04,020 --> 00:01:06,480 从前面的视频可以知道-- 64 00:01:06,480 --> 00:01:10,940 我先把它写出来-- 65 00:01:10,940 --> 00:01:13,690 f(x)当x趋向于a时的极限 66 00:01:13,690 --> 00:01:17,560 直观地说 就是指 67 00:01:17,560 --> 00:01:20,980 x从任一边趋向a时 68 00:01:20,980 --> 00:01:22,290 比如从这边 69 00:01:22,290 --> 00:01:27,030 这时f(x)趋向于什么? 70 00:01:27,030 --> 00:01:29,490 当x在这的时候 f(x)在这 71 00:01:29,490 --> 00:01:33,080 x在这的时候 f(x)在这 72 00:01:35,950 --> 00:01:40,320 可以看到 它是趋向于L的 73 00:01:40,320 --> 00:01:42,200 从另一边接近a时-- 74 00:01:42,200 --> 00:01:44,750 我们求过只从左边或者右边 75 00:01:44,750 --> 00:01:48,670 趋向于某个数时的极限 76 00:01:48,670 --> 00:01:52,380 但为了极限存在 77 00:01:52,380 --> 00:01:54,440 必须从正负方向同时趋向 78 00:01:54,440 --> 00:01:57,460 一个相同的数 79 00:01:57,460 --> 00:02:03,860 从右边接近a时 选这个点 80 00:02:03,860 --> 00:02:06,600 这是f(x) 81 00:02:06,600 --> 00:02:07,960 在这 82 00:02:07,960 --> 00:02:09,640 x到了这一点时 f(x)在这 83 00:02:09,640 --> 00:02:13,360 随着x越来越接近a点 84 00:02:13,360 --> 00:02:15,480 f(x)趋向于L 85 00:02:15,480 --> 00:02:16,290 所以f(x)当x趋向于a时的极限 86 00:02:16,290 --> 00:02:19,340 为L 87 00:02:19,340 --> 00:02:21,440 我想我们理解这种定义了 88 00:02:21,440 --> 00:02:27,360 但这并不是很-- 89 00:02:27,360 --> 00:02:29,360 实际上相对于极限的概念 90 00:02:29,360 --> 00:02:32,180 这样的说法很不精确 91 00:02:32,180 --> 00:02:36,990 我目前所说的仅限于x趋向于某个数时 92 00:02:36,990 --> 00:02:39,290 f(x)趋近什么 93 00:02:39,290 --> 00:02:48,640 所以这个视频中 94 00:02:48,640 --> 00:02:55,150 我会尝试介绍一种新的 95 00:02:55,150 --> 00:02:57,190 极限的定义 96 00:02:57,190 --> 00:03:00,960 这种定义比简单的当x趋向某个值 97 00:03:00,960 --> 00:03:05,980 f(x)趋向于什么的定义方式 98 00:03:05,980 --> 00:03:12,360 要稍微精确一些 或者说要精确很多 99 00:03:12,360 --> 00:03:16,160 我认为可以把它看成一个小游戏 100 00:03:16,160 --> 00:03:18,030 新的定义就是 101 00:03:18,030 --> 00:03:18,490 这个式子意义在于 102 00:03:18,490 --> 00:03:21,840 我总是可以给出这个点的一个范围 103 00:03:21,840 --> 00:03:29,900 这里谈到范围 104 00:03:29,900 --> 00:03:37,460 我并不是针对整个定义域而言 105 00:03:37,460 --> 00:03:39,760 这里说的范围是像 比如说 106 00:03:39,760 --> 00:03:46,330 规定这么一段距离 107 00:03:46,330 --> 00:03:49,980 只要在这范围之内 108 00:03:49,980 --> 00:03:51,160 可以保证f(x)的值和L的距离 109 00:03:51,160 --> 00:03:54,300 始终不会超过某个给定值 110 00:03:54,300 --> 00:03:57,890 我把它看做 111 00:03:57,890 --> 00:04:00,030 一个小游戏 112 00:04:02,820 --> 00:04:07,830 你们可以不相信我 113 00:04:07,830 --> 00:04:10,870 并怀疑f(x)能不能 114 00:04:10,870 --> 00:04:16,770 始终位于和L相距0.5的范围内 115 00:04:16,770 --> 00:04:19,340 你们给出的距离是0.5 116 00:04:19,340 --> 00:04:21,020 此时 我必须能找到 117 00:04:21,020 --> 00:04:22,560 点a附近的一段范围 118 00:04:22,560 --> 00:04:23,910 确保f(x)值始终和L相距0.5以内 对吧? 119 00:04:23,910 --> 00:04:28,770 也就是说f(x)始终位于 120 00:04:31,530 --> 00:04:44,010 这段范围内 121 00:04:44,010 --> 00:04:47,310 只要x位于以a为中心的那段范围 122 00:04:47,310 --> 00:04:49,630 只要满足你们所给出的范围 123 00:04:49,630 --> 00:04:52,690 那么f(x)肯定 124 00:04:52,690 --> 00:04:58,090 能达到你们的要求 125 00:04:58,090 --> 00:05:01,260 我把图画大一些 126 00:05:01,260 --> 00:05:05,790 因为我觉着我是在同一个地方上 127 00:05:05,790 --> 00:05:08,860 反复的写 128 00:05:08,860 --> 00:05:10,450 这是曲线f(x) 这点没有定义 129 00:05:10,450 --> 00:05:12,590 这里不一定非得是个洞 130 00:05:12,590 --> 00:05:13,050 其极限值可以等于一个函数值 131 00:05:13,050 --> 00:05:17,090 但当函数在这点无定义却存在极限时 132 00:05:17,090 --> 00:05:19,510 情况会更为有趣 133 00:05:19,510 --> 00:05:20,960 所以这一点是-- 134 00:05:20,960 --> 00:05:24,320 重新画出坐标轴 135 00:05:24,320 --> 00:05:27,810 这是x轴 y轴 x y 136 00:05:27,810 --> 00:05:30,480 这是极限值L 这是点a 137 00:05:30,480 --> 00:05:36,810 所以极限的定义是 138 00:05:36,810 --> 00:05:43,030 我一会儿会回到这个问题 139 00:05:43,030 --> 00:05:48,030 因为既然图大了些 我想再解释一遍 140 00:05:48,030 --> 00:05:51,650 这个式子表示-- 141 00:05:51,650 --> 00:05:54,000 这是极限的ε-δ定义 142 00:05:54,000 --> 00:05:57,710 稍后我们会接触到ε和δ 143 00:05:57,710 --> 00:06:02,320 这式子的意义就是 你给我 144 00:06:02,320 --> 00:06:04,440 距L的任何一个距离 145 00:06:04,440 --> 00:06:05,365 实际上我们称这段距离为ε 146 00:06:09,970 --> 00:06:15,680 与最开始提出的定义相对应 147 00:06:15,680 --> 00:06:19,440 f(x)与L的距离不超过ε 148 00:06:19,440 --> 00:06:23,160 ε可以是任何 149 00:06:23,160 --> 00:06:24,350 大于0的实数 150 00:06:24,350 --> 00:06:26,060 所以这里的这段距离就是ε 151 00:06:26,060 --> 00:06:29,630 这一段也是ε 152 00:06:29,630 --> 00:06:32,980 对于给出的任何ε 任何实数-- 153 00:06:32,980 --> 00:06:36,430 这点是L+ε 154 00:06:36,430 --> 00:06:38,940 这点是L-ε 155 00:06:38,940 --> 00:06:43,000 极限的ε-δ定义是说 156 00:06:43,000 --> 00:06:44,680 不论ε是多少 157 00:06:44,680 --> 00:06:49,420 总可以在a的附近确定一段范围 158 00:06:49,420 --> 00:06:52,570 并称之为δ 159 00:06:52,570 --> 00:06:55,440 总是可以确定一个δ 160 00:06:55,440 --> 00:06:57,290 这段是比a小δ 161 00:06:57,290 --> 00:07:01,270 这段是比a大δ 162 00:07:01,270 --> 00:07:04,490 这是字母δ 163 00:07:04,490 --> 00:07:05,380 只要在a+δ和a-δ之间 164 00:07:05,380 --> 00:07:11,750 选取一个x值 165 00:07:11,750 --> 00:07:16,575 只要x位于这段范围 166 00:07:16,575 --> 00:07:18,880 就可以保证与x相对应的f(x) 167 00:07:18,880 --> 00:07:21,480 位于你所给出的范围 168 00:07:21,480 --> 00:07:23,820 思考一下 你们会觉着有道理 对吧? 169 00:07:23,820 --> 00:07:27,380 实质上是说 170 00:07:27,380 --> 00:07:30,220 我可以无限接近极限值 171 00:07:30,220 --> 00:07:35,680 只要-- 172 00:07:35,680 --> 00:07:39,970 我所说的无限接近 173 00:07:39,970 --> 00:07:45,650 是指你们可以任意给出一个ε值 174 00:07:45,650 --> 00:07:48,190 因为这有点像一个小游戏 175 00:07:48,190 --> 00:07:50,920 通过给出一个需要趋近的点 176 00:07:50,920 --> 00:07:57,790 附近的一段范围 177 00:07:57,790 --> 00:08:02,980 f(x)就可以无限接近极限值 178 00:08:02,980 --> 00:08:09,320 只要是在a附近的这段范围内 179 00:08:09,320 --> 00:08:13,640 选取x的值 180 00:08:13,640 --> 00:08:15,740 只要是在这里取一个x值 181 00:08:15,740 --> 00:08:17,220 我就可以保证f(x) 182 00:08:17,220 --> 00:08:19,750 位于你们所指定的范围 183 00:08:19,750 --> 00:08:22,580 为了更具体点 184 00:08:22,580 --> 00:08:24,110 假设 x位于-- 185 00:08:24,110 --> 00:08:26,730 我们一律换成具体的数字来表示 186 00:08:26,730 --> 00:08:29,870 假设这个是2 187 00:08:29,870 --> 00:08:36,270 这是1 188 00:08:36,270 --> 00:08:40,290 也就是求x趋向1时f(x)的极限 189 00:08:40,290 --> 00:08:42,900 还没定义f(x) 190 00:08:42,900 --> 00:08:48,800 但函数曲线是条有一个洞的直线 191 00:08:48,800 --> 00:08:52,180 那里的f(x)值是2 192 00:08:52,180 --> 00:08:55,590 你们可以给我任何一个数字 193 00:08:55,590 --> 00:09:00,270 假定你们想用几个具体例子来验证一下 194 00:09:00,270 --> 00:09:03,540 比如想要f(x)位于-- 195 00:09:03,540 --> 00:09:08,240 换种颜色-- 196 00:09:08,240 --> 00:09:09,470 想要使f(x)位于距2这点0.5的范围内 197 00:09:09,470 --> 00:09:11,270 也就是在1.5和2.5之间 198 00:09:11,270 --> 00:09:12,760 那么只要x选在-- 199 00:09:12,760 --> 00:09:15,580 x可以任意接近 200 00:09:15,580 --> 00:09:17,950 但只要x选在-- 201 00:09:17,950 --> 00:09:21,720 对于这个函数 202 00:09:21,720 --> 00:09:23,680 假定是在0.9和1.1之间 203 00:09:23,680 --> 00:09:26,250 那么在这个例子中 δ和极限点的距离只有0.1 204 00:09:26,250 --> 00:09:33,460 只要在和1相距0.1的范围内 205 00:09:33,460 --> 00:09:35,810 选取x 206 00:09:35,810 --> 00:09:37,390 就可以确保f(x) 207 00:09:37,390 --> 00:09:41,730 位于要求的范围 208 00:09:41,730 --> 00:09:52,800 希望你们有初步的理解了 209 00:09:52,800 --> 00:09:56,590 现在我用ε和δ来给出定义 210 00:09:56,590 --> 00:09:57,760 实际上在课本中见到的就是这种 211 00:09:57,760 --> 00:10:00,530 接下来再做几个练习 212 00:10:00,530 --> 00:10:04,860 要搞清楚上面只是个特例 213 00:10:04,860 --> 00:10:05,520 你们给出一个ε 我再给出一个δ 214 00:10:05,520 --> 00:10:11,830 但如果它在定义里成立 215 00:10:11,830 --> 00:10:15,210 或者说要把它写出来 216 00:10:15,210 --> 00:10:23,025 那么就是说这并不仅仅适用于 217 00:10:23,025 --> 00:10:27,950 一个特定的例子 218 00:10:27,950 --> 00:10:31,340 而是适用于任何给定的数 219 00:10:31,340 --> 00:10:34,840 ε可以是百万分之一 220 00:10:34,840 --> 00:10:37,980 或者10的负一百次方 221 00:10:37,980 --> 00:10:40,750 也就是说非常接近于2 222 00:10:40,750 --> 00:10:45,400 我都可以给出一个a点附近的范围 223 00:10:45,400 --> 00:10:46,450 只要在里面选x值 224 00:10:46,450 --> 00:10:49,930 那么f(x)就位于所给出的范围 225 00:10:49,930 --> 00:10:55,680 也就是距极限值 226 00:10:55,680 --> 00:10:59,240 万亿分之一的距离 227 00:10:59,240 --> 00:11:03,920 当然 我不能确定 228 00:11:03,920 --> 00:11:07,520 当x=a时的情况 229 00:11:07,520 --> 00:11:10,560 我只是说当x不等于a 230 00:11:10,560 --> 00:11:17,010 且位于给定范围内时 它会成立 231 00:11:17,010 --> 00:11:19,670 f(x)会在给定的范围内 232 00:11:19,670 --> 00:11:23,460 为了在数学上更清晰些 233 00:11:23,460 --> 00:11:27,170 因为目前为止我都只是用单词来讲 234 00:11:27,170 --> 00:11:31,560 这是我们会在课本中看到的 235 00:11:31,560 --> 00:11:36,470 给定任意一个大于0的ε 236 00:11:36,470 --> 00:11:38,690 这是一种定义 对吧? 237 00:11:38,690 --> 00:11:39,640 如果写成这样 238 00:11:39,640 --> 00:11:42,345 那意味着ε可以是大于0的任何数 239 00:11:42,345 --> 00:11:44,670 然后会给出一个δ 240 00:11:44,670 --> 00:11:47,560 记住 ε是f(x)与极限值的距离 241 00:11:47,560 --> 00:11:49,720 对吧? 242 00:11:49,720 --> 00:11:53,010 是f(x)的范围 243 00:11:53,010 --> 00:11:54,050 之后会给出δ 也就是与a的距离 对吧? 244 00:11:54,050 --> 00:11:56,910 写出来 245 00:11:56,910 --> 00:11:58,910 f(x)当x趋向a的极限是1 246 00:11:58,910 --> 00:12:01,330 给出δ 只要x与a相距 247 00:12:01,330 --> 00:12:02,160 不超过δ-- 248 00:12:02,160 --> 00:12:05,550 x和a的距离 249 00:12:05,550 --> 00:12:12,945 假设x选在这-- 换种颜色-- 250 00:12:12,945 --> 00:12:13,960 如果x选在这 251 00:12:13,960 --> 00:12:17,620 那么只要x和a的绝对值 252 00:12:17,620 --> 00:12:19,970 大于0 这是为了保证x不会位于a 253 00:12:19,970 --> 00:12:22,180 因为a点函数无定义 254 00:12:22,180 --> 00:12:25,640 只要x和a的距离 255 00:12:25,640 --> 00:12:29,540 大于0并小于给定的一个值 256 00:12:29,540 --> 00:12:31,320 也就是δ 257 00:12:31,320 --> 00:12:34,260 只要在这个范围选取x 258 00:12:34,260 --> 00:12:38,120 我在这画一个小点的x轴 259 00:12:38,120 --> 00:12:39,330 这是a 这段距离是δ 260 00:12:39,330 --> 00:12:43,370 这段距离也是δ 261 00:12:43,370 --> 00:12:45,440 只要选取位于这里的x-- 262 00:12:45,440 --> 00:12:47,270 这个x