在這部影片中,我們會用幾個例子來練習假設和反證 在例A中,有一個代數式,和一個表格,表格中有不同的n值,與其對應的計算結果 t 注意我們從這個等式開始 然後這裡我們只有一個表格 把它分成三個部分,我們有一些不同n值,中間是各種計算,然後計算出來的不同答案 t 看完表格之後,Pablo做了這個假設 (n-1)(n-2)(n-3)的值,換句話說,t 值是零,對任何是整數的n來說 所以他基本上是在說,不管我在左邊的n放入什麼數 我的答案都會變成零 因為前面三次的結果都是這樣,所以以後可能都會是這樣的結果 我們的問題是:這個假設是有效的嗎?真的嗎? 所以,如果假設為真,這表示n代入任何數字都成立 所以你可以代入100,t 仍然會是零 讓我們來試試看,我們來試100,n等於100 我們試著要看 t 是否會真的等於零,讓我們來代入 我們會有 (100-1)(100-2)(100-3) 100 減 1 等於 99 然後乘以98 乘以97 現在我知道了答案不是零 因為要得到「零」的答案,你需要在這一排乘數中有一個零來相乘 所以這個數字不會等於零,他將會是一個大的數字,絕不是零 所以表示他的假設不是有效的 這不是真的,而我剛才在這裡做的,n 等於100,是一個反例 因為這是一個特例,證明了假設是錯的 我可以代入,例如100,進去 t 的算式,然後答案不是零,因此,他是錯的 所以一個反證只是舉一個例子去證明某人是錯的 「反」這個前綴詞意味像是反對它的清白 好吧,讓我們來看例B 作者為圖形藝術計畫畫著一些圖,他畫了多邊形和一些對角線 這裡我們有四個例子,奠基於這些例子,作者做了這個假設: 「如果凸多邊形有 n 個邊,那麼就可以從多邊形內任一頂點畫出 n-2 個三角形」 我們來想一下這代表什麼意思,他是在說,如果這個形狀有 n 個邊 例如,這就是 n 等於 3,有三個邊 四個邊 五個邊 六個邊 他是在說,總是會有 n-2 個三角形 如果 n 是 5,5減2是3,在這個例子裡面,就會有三個三角形,一、二、三 下面這個四角形,6減2 這邊的問題是:這個作者的假設是否正確? 你可以找出反例嗎? 他的假設確實看來是正確的,從他舉的這四個例子看來 我們可以做更多的例子,然後結果都將會是正確的 但你仍然未證明它,如果你只看了舉例,因為仍然可能 還有其它例證你還沒想到,但可以當做反證的 所以我們應該說的是 他的假設貌似為真 但仍然需要被證明 因為單單只看例子並不是正式的真正的證明確認此假設為真