1 00:00:01,072 --> 00:00:05,285 现在我们有一个四边形 2 00:00:05,285 --> 00:00:08,511 其中有两个边是平行的 3 00:00:08,511 --> 00:00:13,743 这种四边形被定义为梯形 4 00:00:14,697 --> 00:00:17,399 现在我们有各边的长度 5 00:00:17,399 --> 00:00:20,101 那么这个梯形的面积是多大呢 6 00:00:20,101 --> 00:00:22,804 我们来想想 7 00:00:22,804 --> 00:00:26,684 如果我们拿这个长度为6的底边乘以高 8 00:00:26,684 --> 00:00:28,809 所以6 x 3是什么呢 9 00:00:28,809 --> 00:00:33,830 这样算的话我们会得到一个长为6宽为3的 10 00:00:33,830 --> 00:00:39,893 长方形的面积 11 00:00:39,938 --> 00:00:43,595 所以我们得到得面积其实是这样的 12 00:00:43,595 --> 00:00:45,158 我换个颜色 13 00:00:45,158 --> 00:00:47,731 这样的长方形 14 00:00:47,731 --> 00:00:49,719 面积就是6 x 3 15 00:00:49,719 --> 00:00:53,801 我们得到得是这整个长方形的面积 16 00:00:53,801 --> 00:00:56,091 但是这个梯形的面积很明显比这个长方形的面积小 17 00:00:56,091 --> 00:00:58,875 但是我们先把它放这 18 00:00:58,875 --> 00:01:05,535 如果我们用 2 x 3 呢 19 00:01:05,535 --> 00:01:10,407 那么我们就会得到一个宽为2高为3的正方形的面积 20 00:01:10,407 --> 00:01:16,648 你可以想象它是这个长方形 21 00:01:18,187 --> 00:01:22,097 这就是2 x 3的长方形 22 00:01:22,097 --> 00:01:25,898 现在我们看得出来 23 00:01:25,898 --> 00:01:28,960 梯形的面积应该在6 x 3跟2 x 3之间 24 00:01:28,960 --> 00:01:32,702 也有可能是正好在中间 25 00:01:32,702 --> 00:01:36,804 因为如果你看看这两个长方形的面积差 26 00:01:36,804 --> 00:01:39,695 让我给他上个阴影 27 00:01:39,695 --> 00:01:43,409 所以这边是左边的面积差 28 00:01:43,409 --> 00:01:49,201 这边是右边的面积差 29 00:01:49,201 --> 00:01:54,035 如果我们只看这个梯形的话 30 00:01:54,035 --> 00:01:56,702 如果我们从这个黄色的长方形开始 31 00:01:56,702 --> 00:02:00,536 总面积加上了左边的面积差的一半 32 00:02:00,536 --> 00:02:04,370 总面积加上了左边的面积差的一半 33 00:02:04,370 --> 00:02:08,206 正好是左边一半的面积 34 00:02:08,206 --> 00:02:12,362 再加上右边面积差的一半 35 00:02:12,362 --> 00:02:16,879 这完全符合逻辑 36 00:02:16,879 --> 00:02:18,382 梯形的面积就是 37 00:02:18,382 --> 00:02:20,838 这整个面积 38 00:02:20,838 --> 00:02:22,972 其实就是个这两个长方形的平均值 39 00:02:22,972 --> 00:02:28,616 就是这个小长方形加上大长方形的一半 40 00:02:28,616 --> 00:02:30,367 所以让我们取个平均值 41 00:02:30,367 --> 00:02:34,187 就是(6x3)+(2x3) 42 00:02:34,187 --> 00:02:38,368 除以2 43 00:02:38,368 --> 00:02:40,199 所以当你想找一个梯形的面积时 44 00:02:40,199 --> 00:02:45,785 你得先找两个底,上底和下底 45 00:02:45,785 --> 00:02:50,603 将两个底各乘以高,然后取平均值 46 00:02:50,603 --> 00:02:52,139 或者你可以这么想 47 00:02:52,139 --> 00:02:53,462 或者你可以这么想 48 00:02:53,462 --> 00:02:54,805 所以这跟[(6+2)x 3]/2是一样的 49 00:02:54,805 --> 00:02:57,688 所以这跟[(6+2)x 3]/2是一样的 50 00:02:57,688 --> 00:02:59,802 我只是把3提出来了 51 00:02:59,802 --> 00:03:05,054 (6+2)乘以3 52 00:03:05,054 --> 00:03:08,731 (6+2)乘以3 53 00:03:08,731 --> 00:03:12,498 除以2 54 00:03:12,498 --> 00:03:14,312 也就等于 55 00:03:14,312 --> 00:03:17,696 我用另外一种方法写 56 00:03:17,696 --> 00:03:22,558 (6+2)/2 57 00:03:22,558 --> 00:03:25,326 然后乘以3 58 00:03:25,326 --> 00:03:26,975 所以你可以把它看成 59 00:03:26,975 --> 00:03:30,533 两个长方形的平均值 60 00:03:30,533 --> 00:03:33,968 所以你将每个底乘以高然后取平均值 61 00:03:33,968 --> 00:03:35,552 你也可以把它看成 62 00:03:35,552 --> 00:03:38,270 直接将两个底加起来然后 63 00:03:38,270 --> 00:03:41,202 将它乘以3然后除以2 64 00:03:41,202 --> 00:03:45,030 或者可以先取两个底边的平均值 65 00:03:45,030 --> 00:03:47,005 然后再乘以高 66 00:03:47,005 --> 00:03:49,072 这让我们发现一个思考这个问题的新角度 67 00:03:49,072 --> 00:03:50,869 如果你取这两个长度的平均值 68 00:03:50,869 --> 00:03:54,146 (6+2)/2是4 69 00:03:54,146 --> 00:03:57,900 会得到一个像这样的宽 70 00:03:57,900 --> 00:03:59,745 宽为4 71 00:03:59,746 --> 00:04:04,916 看起来是这个样子 72 00:04:04,916 --> 00:04:06,846 然后你将这个乘以高 73 00:04:06,846 --> 00:04:10,285 然后会得到一个这样的长方形 74 00:04:10,285 --> 00:04:16,185 正好是大长方形跟小正方形的面积差的一半 75 00:04:16,185 --> 00:04:18,364 所以这些表达都是一样的 76 00:04:18,364 --> 00:04:20,277 现在让我们把面积算出来 77 00:04:20,277 --> 00:04:21,176 我们可以用其中任何一个 78 00:04:21,176 --> 00:04:25,876 (6x3)是18 79 00:04:25,876 --> 00:04:28,302 加上6再除以2 80 00:04:28,302 --> 00:04:31,867 也就是24/2=12 81 00:04:31,867 --> 00:04:36,310 也可以用这一个(6+2)是8 82 00:04:36,310 --> 00:04:38,343 乘以3除以2是12 83 00:04:38,343 --> 00:04:40,828 (6+2)/2是4 84 00:04:40,828 --> 00:04:42,807 乘以3就等于12