1 00:00:00,070 --> 00:00:02,080 到現在爲止 2 00:00:02,080 --> 00:00:03,530 我告訴大家的關於點乘和叉乘的 3 00:00:03,530 --> 00:00:06,440 只是作爲定義 用向量長度乘以 4 00:00:06,440 --> 00:00:07,960 夾角餘弦 5 00:00:07,960 --> 00:00:09,900 或者正弦 6 00:00:09,900 --> 00:00:12,600 但是如果題目給條件不是直觀的向量呢? 7 00:00:12,600 --> 00:00:14,400 如果題目件沒有給出夾角θ呢? 8 00:00:14,400 --> 00:00:17,200 這時應該怎樣計算點乘和叉乘呢? 9 00:00:17,200 --> 00:00:19,200 好吧 我先給出 10 00:00:19,200 --> 00:00:20,060 之前介紹過的各自的定義式 11 00:00:20,060 --> 00:00:26,860 假設a點乘b 12 00:00:26,860 --> 00:00:31,270 要用a的模乘b的模再 13 00:00:31,270 --> 00:00:33,400 乘以夾角餘弦 14 00:00:33,400 --> 00:00:37,830 a x b將等於 15 00:00:37,830 --> 00:00:41,710 a的模乘以b的模再 16 00:00:41,710 --> 00:00:44,150 乘以夾角正弦 17 00:00:44,150 --> 00:00:47,110 所以它們的垂直投影- 18 00:00:47,110 --> 00:00:48,810 再乘以 19 00:00:48,810 --> 00:00:51,100 跟兩向量都正交的單位法向量 20 00:00:51,100 --> 00:00:52,930 至於這個 21 00:00:52,930 --> 00:00:55,300 單位法向量的方向 22 00:00:55,300 --> 00:00:56,360 你可以用右手定則知道 23 00:00:56,360 --> 00:00:59,920 但如果我們沒有θ值 24 00:00:59,920 --> 00:01:01,580 沒有向量夾角怎麽辦呢? 25 00:01:01,580 --> 00:01:07,590 如果只告訴你向量a 26 00:01:07,590 --> 00:01:10,450 而且是向量a的工程表示符號 要怎麽辦呢? 27 00:01:10,450 --> 00:01:11,610 工程表示符號就是 28 00:01:11,610 --> 00:01:13,540 把向量 用其在x y z方向 29 00:01:13,540 --> 00:01:16,070 分解以後得到的三個分量大小來表示 30 00:01:16,070 --> 00:01:22,020 假設a是5i(式子未完)-- 31 00:01:22,020 --> 00:01:25,310 i就是在x方向的單位向量 32 00:01:25,310 --> 00:01:33,400 a是5i-6j+3k 33 00:01:34,070 --> 00:01:36,720 i j k是x y z方向上的 34 00:01:36,720 --> 00:01:38,430 單位向量 35 00:01:38,430 --> 00:01:41,450 5是x方向上a的長度 36 00:01:41,450 --> 00:01:43,360 -6是y方向的分量 37 00:01:43,360 --> 00:01:46,040 3是z方向的分量 38 00:01:46,040 --> 00:01:47,340 其實可以畫圖表示 39 00:01:47,340 --> 00:01:49,470 實際上我正在找一個圖形計算器 40 00:01:49,470 --> 00:01:51,200 借助它我就可以給大家在影片裏展示各種圖形了 41 00:01:51,200 --> 00:01:52,350 讓大家有更直觀的感覺 42 00:01:52,350 --> 00:01:53,660 好 假設這就是大家得到的所有的有用條件 43 00:01:53,660 --> 00:02:00,500 至於b 我再編幾個數 44 00:02:00,500 --> 00:02:03,040 b是-2i(未完) 45 00:02:03,040 --> 00:02:05,660 當然現在這些都是在三維空間內討論的 46 00:02:14,400 --> 00:02:15,510 你可以自己畫圖看一下 47 00:02:15,510 --> 00:02:18,150 顯然 如果這就是你得到的問題 48 00:02:18,150 --> 00:02:21,590 並且你要是在電腦仿真中 49 00:02:21,590 --> 00:02:22,740 模擬這些向量 50 00:02:22,740 --> 00:02:23,600 你應該會這麽做: 51 00:02:23,600 --> 00:02:25,400 你會把向量分解成x y z三個分量 52 00:02:25,400 --> 00:02:27,000 因爲如果要是做向量相加運算 53 00:02:27,000 --> 00:02:28,800 只需要分別把各分量相加即可 54 00:02:28,800 --> 00:02:29,980 但如果要做叉乘或點乘的話 55 00:02:29,980 --> 00:02:32,090 要怎麽相乘呢? 56 00:02:32,090 --> 00:02:34,540 在這裡我不給大家證明原理 57 00:02:34,540 --> 00:02:35,700 只是告訴大家怎麽做 58 00:02:35,700 --> 00:02:37,700 點乘非常簡單 59 00:02:37,700 --> 00:02:39,430 如果向量是用這種方式給的 60 00:02:39,430 --> 00:02:41,140 其實還有另一種書寫方法 61 00:02:41,140 --> 00:02:42,700 還可以寫在括號裏 62 00:02:42,700 --> 00:02:47,490 有時候可以把這寫成(5,-6,3) 63 00:02:47,490 --> 00:02:50,090 只是在x y z方向內分量的長度 64 00:02:50,090 --> 00:02:50,600 只是想讓大家 65 00:02:50,600 --> 00:02:54,310 熟悉所有這些表示方法 66 00:02:54,310 --> 00:02:57,560 你可以把b寫成(-2,7,4) 67 00:02:57,560 --> 00:02:58,450 表示的向量都是一樣的 68 00:02:58,450 --> 00:03:00,450 看到其中任何一種你都不應該不認識 69 00:03:00,450 --> 00:03:05,820 好吧 a點乘b到底要怎麽做呢? 70 00:03:08,010 --> 00:03:10,700 這個方法我相信大家肯定會喜歡的 71 00:03:10,700 --> 00:03:14,540 你需要做的就是 把兩者i分量長度相乘 72 00:03:14,540 --> 00:03:17,130 加上兩者j分量相乘 73 00:03:17,130 --> 00:03:20,300 再加兩者k分量相乘 74 00:03:20,300 --> 00:03:25,580 所以應該是5乘以-2 75 00:03:25,580 --> 00:03:37,930 加上-6乘以7加上3乘以4 76 00:03:37,930 --> 00:03:45,210 等於-10-42+12 77 00:03:45,210 --> 00:03:52,100 等於-52+12 即-40 78 00:03:52,100 --> 00:03:53,580 這就是結果 只是一個數字而已 79 00:03:53,580 --> 00:03:57,000 其實我很想在三維畫圖器上畫畫 80 00:03:57,000 --> 00:04:01,200 看看爲什麽最後等於-40 81 00:04:01,200 --> 00:04:03,350 a b一定是反向的 82 00:04:03,350 --> 00:04:05,150 它們各自在對方上的射影 83 00:04:05,150 --> 00:04:06,250 是相反的 84 00:04:06,250 --> 00:04:09,610 所以我們最後得到一個負數 85 00:04:09,610 --> 00:04:12,100 我們這麽做 86 00:04:12,100 --> 00:04:13,680 是因爲我也不想太直觀 87 00:04:13,680 --> 00:04:14,520 這就是點乘的計算方法 88 00:04:14,520 --> 00:04:16,120 非常簡單 89 00:04:16,120 --> 00:04:18,000 僅僅把x方向分量乘起來 90 00:04:18,000 --> 00:04:21,360 加上y分量乘積 91 00:04:21,360 --> 00:04:23,650 再加上所有z分量乘積 92 00:04:23,650 --> 00:04:25,950 所以每當題給條件是工程表示符號 93 00:04:25,950 --> 00:04:28,270 而我要做點乘時 94 00:04:28,270 --> 00:04:33,750 這個方法非常好用 而且不容易犯錯 95 00:04:33,750 --> 00:04:34,980 但是 接下來你會看到 96 00:04:34,980 --> 00:04:38,050 求這種形式的向量的叉乘積 97 00:04:38,050 --> 00:04:41,270 將比較麻煩 98 00:04:41,270 --> 00:04:42,500 當然了 對於點乘 99 00:04:42,500 --> 00:04:43,330 還有其他做法 100 00:04:43,330 --> 00:04:44,050 你可以求出 101 00:04:44,050 --> 00:04:45,860 每個向量的模 102 00:04:45,860 --> 00:04:50,370 然後用三角學的知識 103 00:04:50,370 --> 00:04:52,500 求出θ 使用點乘定義式來計算 104 00:04:52,500 --> 00:04:55,540 說到這我相信你會認爲 105 00:04:55,540 --> 00:04:57,500 第一種方法是相對更簡單的 106 00:04:57,500 --> 00:04:59,210 所以做點乘是沒什麽難的 107 00:04:59,210 --> 00:05:01,350 現在來看如何做叉乘 108 00:05:01,350 --> 00:05:04,800 重申一下 這裡我不進行證明 109 00:05:04,800 --> 00:05:06,390 只是向大家介紹方法 110 00:05:06,390 --> 00:05:07,450 在以後的影片裏 111 00:05:07,450 --> 00:05:10,150 我相信大家總會讓我證明的 112 00:05:10,150 --> 00:05:11,070 那時候我會給出證明 113 00:05:11,070 --> 00:05:15,330 但是叉乘確實是更複雜一些 114 00:05:15,330 --> 00:05:18,110 並且我也從不希望用這種工程符號表示 115 00:05:18,110 --> 00:05:20,240 來做叉乘(太麻煩了) 116 00:05:20,240 --> 00:05:23,780 a x b就等於 117 00:05:23,780 --> 00:05:26,910 這時候要用到矩陣的知識了 118 00:05:26,910 --> 00:05:30,810 你需要取行列式 119 00:05:30,810 --> 00:05:33,030 先畫一條長行列式線 120 00:05:33,030 --> 00:05:34,260 在行列式的頂端- 121 00:05:34,260 --> 00:05:36,940 介紹這種方法只是讓你記住怎麽做 122 00:05:36,940 --> 00:05:38,740 沒有給很出直觀的解釋爲什麽要這麽做 123 00:05:38,740 --> 00:05:41,380 不過在叉乘的實際定義中直觀概念已經給出了 124 00:05:41,380 --> 00:05:44,030 那就是向量的哪部分是跟另一個正交的 125 00:05:44,030 --> 00:05:45,150 將這兩部分相乘 126 00:05:45,150 --> 00:05:46,770 這時右手定則來決定 127 00:05:46,770 --> 00:05:48,490 向量指向的方向 128 00:05:48,490 --> 00:05:51,590 如果給出的是工程表示 129 00:05:51,590 --> 00:05:55,480 在行列式第一行寫 i j k這三個單位向量 130 00:05:58,410 --> 00:06:02,340 然後寫叉乘中第一個向量 131 00:06:02,340 --> 00:06:03,630 因爲對叉乘來說向量順序是不能變的 132 00:06:03,630 --> 00:06:09,030 所以第二行是 5 -6 3 133 00:06:09,030 --> 00:06:11,900 然後寫第二個向量b 134 00:06:11,900 --> 00:06:17,180 所以第三行是 -2 7 4 135 00:06:17,180 --> 00:06:20,000 接下來要對這個3x3矩陣取行列式 136 00:06:20,000 --> 00:06:21,270 應該怎麽做呢? 137 00:06:21,270 --> 00:06:26,240 等於i的子行列式(即余子式)(未完) 138 00:06:26,240 --> 00:06:27,100 要求i的余子式 139 00:06:27,100 --> 00:06:29,040 去掉i所在的行和列 140 00:06:29,040 --> 00:06:30,580 行列式剩下的部分就是i的余子式 141 00:06:30,580 --> 00:06:38,780 -6 3 7 4(如影片所示)行列式乘i 142 00:06:38,780 --> 00:06:41,450 說到這如果你記不清如何做行列式運算 143 00:06:41,450 --> 00:06:42,740 最好複習一下行列式部分的知識 144 00:06:42,740 --> 00:06:47,580 看接下來的運算應該可以喚起你的學習記憶 145 00:06:47,580 --> 00:06:50,800 三個子行列式前的符號 是+ - + 146 00:06:50,800 --> 00:06:53,800 所以j的余子式符號是- 147 00:06:53,800 --> 00:06:55,480 那j的余子式是什麽呢 148 00:06:55,480 --> 00:06:57,550 去掉j所在的行和列 149 00:06:57,550 --> 00:07:01,470 就得到了5 3 -2 4(如影片所示) 150 00:07:05,000 --> 00:07:07,940 先去掉j所在的行與列 151 00:07:07,940 --> 00:07:09,000 不管剩下什麽 152 00:07:09,000 --> 00:07:11,550 這就是j的余子式中的數字 153 00:07:11,550 --> 00:07:13,220 我這麽稱呼 154 00:07:13,220 --> 00:07:18,500 j 然後+ 我想把這些都寫在一行裏 155 00:07:18,500 --> 00:07:19,440 看起來會整齊一點 156 00:07:19,440 --> 00:07:21,000 加k的余子式 157 00:07:21,000 --> 00:07:23,360 去掉k所在的行和列 158 00:07:23,360 --> 00:07:35,060 剩下的是5 -6 -2 7(如影片所示) 乘以k 159 00:07:35,060 --> 00:07:36,690 現在來計算一下 160 00:07:36,690 --> 00:07:39,300 先騰一些運算空間出來 161 00:07:39,300 --> 00:07:41,270 這些寫的太大了 162 00:07:41,270 --> 00:07:43,410 現在不需要這些了 擦掉 163 00:07:43,410 --> 00:07:45,360 那麽運算結果是什麽呢? 164 00:07:45,360 --> 00:07:49,650 來上邊這裡運算吧 165 00:07:49,650 --> 00:07:51,400 這些2x2行列式是蠻簡單的 166 00:07:51,400 --> 00:07:56,650 這個是-6x4-7x3 167 00:07:56,650 --> 00:08:00,510 這裡我經常粗心算錯 也給大家提個醒 168 00:08:00,510 --> 00:08:08,930 -24-21 乘i 減 5x4是20 169 00:08:08,930 --> 00:08:16,590 - -2x3 所以是--6 得到(20--6)j 170 00:08:16,590 --> 00:08:26,000 +5x7 得35 再減-2x(-6) 171 00:08:26,000 --> 00:08:29,830 所以是減12 得(35-12)k 172 00:08:29,830 --> 00:08:34,550 我們可以化簡一下 這裡等於-24-21 173 00:08:34,550 --> 00:08:39,710 是-35(算錯了 是-45) 其實不用放括號裏的 174 00:08:39,710 --> 00:08:43,840 然後是20--6 175 00:08:43,840 --> 00:08:46,690 也就是20+6 得到26 176 00:08:46,690 --> 00:08:47,970 前邊還有一個負號 177 00:08:47,970 --> 00:08:50,640 所以是-26j 178 00:08:50,640 --> 00:08:54,540 這裡是35-12 得到23 179 00:08:56,800 --> 00:08:59,050 這就是叉乘的結果 180 00:08:59,050 --> 00:09:00,770 如果在三維空間裏畫圖表示 181 00:09:00,770 --> 00:09:03,170 你會看到這個是非常有趣的 182 00:09:00,770 --> 00:09:06,970 如果我沒算錯的話(其實i分量算錯了) 183 00:09:06,970 --> 00:09:11,100 -35i-26j+23k 這個向量 184 00:09:11,100 --> 00:09:14,950 跟向量a和b都是垂直的 185 00:09:14,950 --> 00:09:18,400 現在我就講到這 186 00:09:18,400 --> 00:09:20,000 下段影片再見了 187 00:09:20,000 --> 00:09:22,230 希望我能找到一個向量畫圖程序吧 188 00:09:22,230 --> 00:09:24,360 那樣的話做點乘和叉乘運算 189 00:09:24,360 --> 00:09:27,080 就有趣多了 190 00:09:27,080 --> 00:09:30,100 用我剛教的方法運算然後畫出來看看 191 00:09:30,100 --> 00:09:31,550 看看結果是不是滿足我們預期 192 00:09:31,550 --> 00:09:36,330 看看是不是這個向量真的 193 00:09:36,330 --> 00:09:38,200 是像大家用右手定則判斷的那個方向一樣 194 00:09:38,200 --> 00:09:41,900 跟兩個向量都垂直 195 00:09:41,900 --> 00:09:45,090 下段影片見