1 99:59:59,999 --> 99:59:59,999 log以3为底27x的对数 2 99:59:59,999 --> 99:59:59,999 再说一次 3 99:59:59,999 --> 99:59:59,999 只是通过对数运算性质把它展开得到的 4 99:59:59,999 --> 99:59:59,999 这个结果并没有比原式简单 5 00:00:00,000 --> 00:00:04,384 这里要求化简log以3为底27x的对数 6 00:00:04,384 --> 00:00:06,715 这个式子已经够简单了 7 00:00:06,715 --> 00:00:08,523 但是要求用对数运算性质 8 00:00:08,523 --> 00:00:11,110 对它进行转化 9 00:00:11,110 --> 00:00:13,346 结果可能看起来更复杂 10 00:00:13,346 --> 00:00:15,323 下面尽量化一下 11 00:00:15,323 --> 00:00:17,946 可以用对数运算性质转化 12 00:00:17,946 --> 00:00:19,921 因为这里表示 13 00:00:19,921 --> 00:00:22,731 3的几次方可得27x 14 00:00:22,731 --> 00:00:26,444 27x也就是27乘以x 15 00:00:26,444 --> 00:00:30,552 因此用到的对数运算性质是 16 00:00:30,552 --> 00:00:40,110 log以b为底a乘以c的对数 17 00:00:40,110 --> 00:00:41,656 等于 18 00:00:41,656 --> 00:00:48,079 log以b为底a的对数加log以b为底c的对数 19 00:00:48,079 --> 00:00:50,982 这是由指数运算性质推算出来的 20 00:00:50,982 --> 00:00:54,705 也就是 同底数幂相乘时 21 00:00:54,705 --> 00:00:56,421 底数不变指数相加 22 00:00:56,421 --> 00:00:58,121 下面再进一步讲清楚 23 00:00:58,121 --> 00:01:00,910 这部分可能有点难懂 这个例子最重要的是 24 00:01:00,910 --> 00:01:02,656 让大家知道如何去运用对数运算性质 25 00:01:02,656 --> 00:01:04,479 但能了解推导过程当然更好 26 00:01:04,479 --> 00:01:10,571 假设log 27 00:01:10,571 --> 00:01:13,777 log以b为底a乘以c的对数等于x 28 00:01:13,777 --> 00:01:17,587 这部分计算得到x 29 00:01:17,587 --> 00:01:22,079 假设这部分计算得到y 30 00:01:22,079 --> 00:01:26,438 那么log以b为底a的对数等于y 31 00:01:26,438 --> 00:01:32,279 假设这部分计算得到z 32 00:01:32,279 --> 00:01:34,715 那么log以b为底c的对数等于z 33 00:01:34,715 --> 00:01:37,715 现在已知 34 00:01:37,715 --> 00:01:39,715 由这部分 这部分 35 00:01:39,715 --> 00:01:46,829 或者说这部分可得 36 00:01:46,829 --> 00:01:49,823 b的x次方等于a乘以c 37 00:01:49,823 --> 00:01:54,187 由这部分可得 38 00:01:54,187 --> 00:01:56,859 b的y次方等于a 39 00:01:56,859 --> 00:01:59,823 这部分可得 40 00:01:59,823 --> 00:02:02,029 b的z次方等于c 41 00:02:02,029 --> 00:02:04,198 这里同样用绿笔写 42 00:02:04,198 --> 00:02:06,448 写与之等价的表达式 43 00:02:06,448 --> 00:02:08,025 写成指数函数式 44 00:02:08,025 --> 00:02:08,525 或者说指数方程 45 00:02:09,818 --> 00:02:13,685 来替代对数方程 46 00:02:13,685 --> 00:02:16,285 b的z次方等于c 47 00:02:16,285 --> 00:02:18,015 这是意义相同的式子 48 00:02:18,015 --> 00:02:20,352 意义相同的式子 49 00:02:20,352 --> 00:02:23,377 用不同的表达式表示相同的意义 50 00:02:23,377 --> 00:02:25,500 这里用另一种方式表示同种意义 51 00:02:25,500 --> 00:02:28,531 现在已知 52 00:02:28,531 --> 00:02:33,813 a等于它 等于b的y次方 53 00:02:33,813 --> 00:02:36,438 c等于b的z次方 54 00:02:36,438 --> 00:02:41,808 那么 55 00:02:41,808 --> 00:02:43,962 b的x次方等于b的y次方 56 00:02:43,962 --> 00:02:47,275 由前面可知 也就是a 57 00:02:47,275 --> 00:02:49,479 乘以b的z次方 58 00:02:49,479 --> 00:02:52,290 乘以b的z次方 59 00:02:52,290 --> 00:02:54,208 根据指数运算性质可知 60 00:02:54,208 --> 00:02:56,936 根据指数运算性质可知 61 00:02:56,936 --> 00:02:58,744 b的y次方乘以b的z次方 62 00:02:58,744 --> 00:03:04,571 等于 63 00:03:04,571 --> 00:03:06,771 b的y+z次方 换一种颜色写 64 00:03:06,771 --> 00:03:09,905 这是由指数运算性质得到的 65 00:03:09,905 --> 00:03:15,490 b的y+z次方等于 66 00:03:15,490 --> 00:03:19,023 b的x次方 那么一定是x=y+z 67 00:03:19,023 --> 00:03:21,695 x一定是等于y+z 68 00:03:21,695 --> 00:03:24,264 这里比较难懂 不必太担心 69 00:03:24,264 --> 00:03:26,536 首先最重要的是 70 00:03:26,536 --> 00:03:28,459 大家知道怎么用 其次可以思考其意义 71 00:03:28,459 --> 00:03:31,562 也可以代上几个数试试 72 00:03:31,562 --> 00:03:34,675 大家可以看出 对数其实就是指数 73 00:03:34,675 --> 00:03:38,269 你们可能会问 什么意思? 74 00:03:38,269 --> 00:03:41,608 算对数时得到的结果是指数 75 00:03:41,608 --> 00:03:45,141 也就是以b为底数得出a乘以c的那个指数 76 00:03:45,141 --> 00:03:47,223 这里应用这个性质 77 00:03:47,223 --> 00:03:51,669 根据这一性质 78 00:03:51,669 --> 00:04:02,325 log以3为底27乘以x的对数 括起来 79 00:04:02,325 --> 00:04:05,777 等于log以3为底27的对数加log以3为底x的对数 80 00:04:05,777 --> 00:04:10,633 这部分可以算 81 00:04:10,633 --> 00:04:15,152 它表示3的几次方等于27 82 00:04:15,152 --> 00:04:19,125 可以这样写:3的问号次方等于27 83 00:04:19,125 --> 00:04:21,577 3的3次方等于27 84 00:04:21,577 --> 00:04:23,567 3乘3得9 再乘3得27 85 00:04:23,567 --> 00:04:26,275 所以这部分等于3 86 00:04:26,275 --> 00:04:29,171 如果要化简 87 00:04:29,171 --> 00:04:32,392 可能不能称之为化简 88 00:04:32,392 --> 00:04:35,782 要展开或者说用运算性质算 89 00:04:35,782 --> 00:04:40,095 因为原式是一项 现在有两项 90 00:04:40,095 --> 00:04:42,248 原式是这一项 91 00:04:42,248 --> 00:04:45,818 看起来更简单 92 00:04:45,818 --> 00:04:50,198 但是展开后第一项变成3 93 00:04:50,198 --> 00:04:54,613 第一项变成3 94 00:04:54,613 --> 00:04:58,546 再加上log以3为底x的对数 95 00:04:58,546 --> 99:59:59,999 这就是原式的另一种表达方法