WEBVTT 00:00:04.420 --> 00:00:07.221 Tasavvur qiling, milodan avvalgi yillar. 00:00:07.221 --> 00:00:09.468 O'ylab ko'ring: 00:00:09.468 --> 00:00:12.721 Qanday qilib soatsiz, vaqtni aniqlashgan? 00:00:12.721 --> 00:00:15.315 Barcha soatlar, vaqt oqimini teng bo'laklarga bo'luvchi 00:00:15.315 --> 00:00:18.890 qandaydir takroriy shaklga asoslangan. 00:00:18.890 --> 00:00:20.688 Bunday takroriy shakillarni topish uchun 00:00:20.688 --> 00:00:22.918 samolarga yuzlanamiz. 00:00:22.918 --> 00:00:24.902 Har kuni, quyoshning chiqishi va botishi 00:00:24.902 --> 00:00:26.184 bunday shakllarning eng oddiysidir. 00:00:26.184 --> 00:00:28.760 Lekin, uzoqroq vaqt bo'lagini kuzatish uchun, 00:00:28.760 --> 00:00:30.811 uzoqroq takrorlanishlarga e'tibor beramiz. 00:00:30.811 --> 00:00:32.512 Buning uchun esa, oyga yuzlanamiz. 00:00:32.512 --> 00:00:33.853 E'tibor bergan bo'lsangiz, 00:00:33.853 --> 00:00:36.578 oy kunlar osha to'lishadi va kichrayadi. 00:00:36.578 --> 00:00:37.894 To'lin oylar orasidagi kunlar sonini 00:00:37.894 --> 00:00:38.978 sanaydigan bo'lsak, 00:00:38.978 --> 00:00:40.910 u 29 kunga teng. 00:00:40.910 --> 00:00:42.833 Bir oydagi kunlar soni shundan kelib chiqqan bo'lsa kerak. 00:00:42.833 --> 00:00:45.873 Ammo, 29 ni teng bo'laklarga bo'lishga harakat qilsak 00:00:45.873 --> 00:00:49.227 bir muammoga duch kelamiz: buning iloji yo'q. 00:00:49.227 --> 00:00:51.676 29 ni teng bo'laklarga bo'lishning yagona yo'li 00:00:51.676 --> 00:00:54.819 uni 29 ta teng bo'lakka bo'lishdan iborat. 00:00:54.819 --> 00:00:57.102 29 soni tub son hisoblanadi. 00:00:57.102 --> 00:00:59.061 Uni bo'linmas deb tasavvur qiling. 00:00:59.061 --> 00:01:00.879 Agar son birdan boshqa 00:01:00.879 --> 00:01:02.814 teng bo'laklarga bo'linsa, 00:01:02.814 --> 00:01:04.621 biz uni 'murakkab son' deb ataymiz. 00:01:04.621 --> 00:01:06.608 Endi biz qiziqishimiz mumkin, 00:01:06.608 --> 00:01:08.450 "Dunyoda nechta tub son bo'lishi mumkin - 00:01:08.450 --> 00:01:10.398 va ularning eng kattasi nechaga teng ekan?" 00:01:10.398 --> 00:01:13.744 Keling, barcha sonlarni ikkita guruhga bo'lamiz. 00:01:13.744 --> 00:01:15.611 Tub sonlar chap tomonda 00:01:15.611 --> 00:01:17.648 va murakkab sonlar o'ng tomonda. 00:01:17.648 --> 00:01:20.379 Boshida, u tomondan bu tomonga raqs tushayotganga o'xshaydilar. 00:01:20.379 --> 00:01:23.017 Ammo, ularning joylashuvida aniq bir shakl mavjud emas. 00:01:23.017 --> 00:01:24.439 Keling, bunday shaklni ko'rish uchun 00:01:24.439 --> 00:01:26.077 zamonaviy usuldan foydalanamiz. 00:01:26.077 --> 00:01:29.047 Bu usul "Ulam spirali" deb nomlanadi. 00:01:29.047 --> 00:01:32.011 Boshida, barcha raqamlarni tartib bilan, o'sayotgan spiral 00:01:32.011 --> 00:01:34.043 ichiga joylab chiqamiz. 00:01:34.043 --> 00:01:37.164 Keyin, barcha tub sonlarni ko'k ranga bo'yab chiqamiz. 00:01:37.164 --> 00:01:41.290 Nihoyat, biz millionlab raqamlarni ko'rish uchun uzoqlashamiz. 00:01:41.290 --> 00:01:42.860 Mana bu tugalmas tub sonlarning 00:01:42.860 --> 00:01:45.365 shakli hisoblanadi. 00:01:45.365 --> 00:01:47.967 Hayratlanarlisi shuki, bu shaklning tuliq strukturasi 00:01:47.967 --> 00:01:50.314 haligacha topilmagan. 00:01:50.314 --> 00:01:51.843 Nimanidir kashf etish arafasida turganga o'xshaymiz. 00:01:51.843 --> 00:01:52.987 Keling, m.a. 300 yillarga 00:01:52.987 --> 00:01:55.526 Qadimgi Gretsiyaga sayr qilamiz. 00:01:55.526 --> 00:01:58.183 Buyuk faylasuf Aleksandryalik Evklid 00:01:58.183 --> 00:01:59.411 barcha sonlarni 00:01:59.411 --> 00:02:02.607 bu ikki guruhga ajralishini anglab yetadi. 00:02:02.607 --> 00:02:04.896 Dastlab, u istalgan sonni 00:02:04.896 --> 00:02:07.078 eng kichik teng sonlar guruhlarigacha 00:02:07.078 --> 00:02:10.599 bo'lish mumkinligini anglab yetadi. 00:02:10.599 --> 00:02:12.921 Va bu eng kichik sonlar esa, har doim, 00:02:12.921 --> 00:02:15.760 tub sonlardir. 00:02:15.760 --> 00:02:17.148 Shunday qilib u, barcha sonlar 00:02:17.148 --> 00:02:20.542 tub sonlardan qurilganini tushunib yetadi. 00:02:20.542 --> 00:02:23.317 Aniqrog'i, barcha sonlar olamini tasavvur qiling. 00:02:23.317 --> 00:02:25.674 tub sonlar haqida unuting. 00:02:25.674 --> 00:02:28.037 Endi, istalgan murakkab sonni olamiz, 00:02:28.037 --> 00:02:30.518 va bo'laklarga ajratamiz, 00:02:30.518 --> 00:02:33.354 va bu bo'laklar har doim tub sonlardir. 00:02:33.354 --> 00:02:34.774 Demak, Evklid istalgan raqam 00:02:34.774 --> 00:02:37.675 kichikroq tub sonlar guruhi orqali ifodalanishi mumkinligin tushunib yetgan. 00:02:37.675 --> 00:02:38.675 Ularni g'ishtlar deb tasavvur qiling. 00:02:38.675 --> 00:02:40.221 Qaysi son bo'lishidan qat'iy nazar 00:02:40.221 --> 00:02:41.996 uni kichiroq tub sonlarni qo'shish bilan yasash mumkin. 00:02:41.996 --> 00:02:46.157 Mana shu Evklid kashfiyotining asosi bo'lib, 00:02:46.157 --> 00:02:48.032 "Arifmetikaning asosiy nazariyasi" deb nomlanadi. 00:02:48.032 --> 00:02:50.759 00:02:50.759 --> 00:02:52.013 00:02:52.013 --> 00:02:53.934 00:02:53.934 --> 00:02:55.501 00:02:55.501 --> 00:02:57.233 00:02:57.233 --> 00:02:59.763 00:02:59.763 --> 00:03:01.624 00:03:01.624 --> 00:03:05.811 00:03:05.811 --> 00:03:07.906 00:03:07.906 --> 00:03:10.714 00:03:10.714 --> 00:03:12.739 00:03:12.739 --> 00:03:13.780 00:03:13.780 --> 00:03:16.178 00:03:16.178 --> 00:03:20.158 00:03:20.158 --> 00:03:23.153 00:03:23.153 --> 00:03:24.887 00:03:24.887 --> 00:03:27.110 00:03:27.110 --> 00:03:28.792 00:03:28.792 --> 00:03:31.276 00:03:31.276 --> 00:03:34.046 00:03:34.046 --> 00:03:36.299 00:03:36.299 --> 00:03:38.017 00:03:38.033 --> 00:03:39.722 00:03:39.722 --> 00:03:42.054 00:03:42.054 --> 00:03:43.937 00:03:43.937 --> 00:03:47.889