1 00:00:00,000 --> 00:00:00,430 有人要我解一下隐式微分 2 00:00:00,430 --> 00:00:04,050 tan(x/y)=x+y 3 00:00:04,050 --> 00:00:10,390 我们已经讲过几个隐式微分的视频 4 00:00:10,390 --> 00:00:14,150 但这个对于第一年学微积分的同学来说 5 00:00:14,150 --> 00:00:17,440 还是很让人头疼的 6 00:00:17,440 --> 00:00:18,720 因此 我想再举个例子 7 00:00:18,720 --> 00:00:21,040 多看几题没有坏处 8 00:00:21,040 --> 00:00:22,860 因此 我们看看这个 9 00:00:22,860 --> 00:00:24,290 因此 要用隐式微分法做这个题 10 00:00:24,290 --> 00:00:26,680 我们只要在方程两边加上 11 00:00:26,680 --> 00:00:29,363 微分算子d/dx 12 00:00:29,363 --> 00:00:29,970 这个对x求导 13 00:00:29,970 --> 00:00:33,290 左边对x求导 相当于 14 00:00:33,290 --> 00:00:35,420 右边对x求导 15 00:00:35,420 --> 00:00:40,580 右边非常简单 16 00:00:40,580 --> 00:00:42,790 左边有点复杂 17 00:00:42,790 --> 00:00:44,770 因此 我们在这边看一下 18 00:00:44,770 --> 00:00:47,380 把左边稍微换个写法 19 00:00:47,380 --> 00:00:52,020 换个颜色 20 00:00:52,020 --> 00:00:52,990 假设 a=tanb 21 00:00:52,990 --> 00:01:00,410 假设b=x/y 22 00:01:00,410 --> 00:01:09,380 然后 很明显 a就是这个 23 00:01:09,380 --> 00:01:11,620 我的意思是把b带到这里 24 00:01:11,620 --> 00:01:14,860 可以把这整个写成a 25 00:01:14,860 --> 00:01:18,090 因此 如果对x求导 26 00:01:18,090 --> 00:01:20,930 这是我们要做的 27 00:01:20,930 --> 00:01:23,740 两边都对它求导 28 00:01:23,740 --> 00:01:26,570 这个是da/dx 29 00:01:26,570 --> 00:01:36,500 等于 x对x求导 30 00:01:36,500 --> 00:01:38,610 这个非常简单 等于1 31 00:01:38,610 --> 00:01:41,210 加上y对x求导 32 00:01:41,210 --> 00:01:44,390 我这么写 33 00:01:44,390 --> 00:01:45,430 导数算子 34 00:01:45,430 --> 00:01:48,820 dy/dx 35 00:01:48,820 --> 00:01:53,770 这就是我们做的 36 00:01:53,770 --> 00:01:54,350 运用y的导数算子 37 00:01:54,350 --> 00:01:56,520 我们不知道它等于多少 我们要求解它 38 00:01:56,520 --> 00:01:58,650 但是 很明显 我不能这么放着 39 00:01:58,650 --> 00:02:01,180 不能把da/dx就这么放着 40 00:02:01,180 --> 00:02:02,360 我们刚刚算出a a等于这个 对吧? 41 00:02:02,360 --> 00:02:04,610 a=tanb b=y/x 42 00:02:04,610 --> 00:02:05,930 我这么写的原因是 我想让你们看看 43 00:02:05,930 --> 00:02:09,450 当求这个的导数时 44 00:02:09,450 --> 00:02:11,730 可以通过链式法则求解 45 00:02:11,730 --> 00:02:14,870 这个不是什么新的知识 46 00:02:14,870 --> 00:02:16,500 因此 导数…我把链式法则写在这儿 47 00:02:16,500 --> 00:02:18,840 da/dx 等于 48 00:02:18,840 --> 00:02:20,090 da/db 乘以 49 00:02:20,090 --> 00:02:22,200 db/dx 50 00:02:22,200 --> 00:02:23,990 这是链式法则 很容易记住 51 00:02:23,990 --> 00:02:30,930 因为 这两个db抵消 52 00:02:30,930 --> 00:02:35,280 就只剩下da/dx 53 00:02:35,280 --> 00:02:37,580 如果把这个看成普通的分数的话 54 00:02:37,580 --> 00:02:39,720 因此 da/db等于多少? 55 00:02:39,720 --> 00:02:43,040 等于1除以(cosb)^2 56 00:02:43,040 --> 00:02:45,800 如果你们不记得了 57 00:02:45,800 --> 00:02:47,470 实际上不难证明 58 00:02:47,470 --> 00:02:50,275 只要把这个写成sinb/cosb 59 00:02:50,275 --> 00:02:55,020 但是这个是很多人都知道的 60 00:02:55,020 --> 00:03:01,570 一个三角函数的导数 61 00:03:01,570 --> 00:03:03,570 我们已经做过一个视频 证明过这个了 62 00:03:03,570 --> 00:03:07,400 有的书也把这个写成(secb)^2 63 00:03:07,400 --> 00:03:10,670 但是我们知道sec方相当于 64 00:03:10,670 --> 00:03:12,130 (1/cos)^2 65 00:03:12,130 --> 00:03:14,230 我喜欢把它化成基本三角函数 66 00:03:14,230 --> 00:03:16,840 或正割函数 比如sec和csc 67 00:03:16,840 --> 00:03:19,070 然后 db/dx等于多少? 68 00:03:19,070 --> 00:03:20,340 这个很有意思 69 00:03:20,340 --> 00:03:25,320 我把b重写一下 实际上 70 00:03:25,320 --> 00:03:27,360 写成b=(xy)^-1 71 00:03:27,360 --> 00:03:28,490 因此 db/dx 72 00:03:28,490 --> 00:03:31,090 我们可以利用链式法则 73 00:03:31,090 --> 00:03:37,030 可以说 我写一下 74 00:03:37,030 --> 00:03:38,260 db/dx等于 75 00:03:38,260 --> 00:03:39,710 (xy)^-1的导数 76 00:03:39,710 --> 00:03:45,730 因此 x的导数等于1 77 00:03:45,730 --> 00:03:48,520 乘以y^(-1) 加上 导数… 78 00:03:48,520 --> 00:03:50,470 因此我写一下 79 00:03:50,470 --> 00:03:53,680 加上d(y^-1)/dx 80 00:03:53,680 --> 00:03:57,530 乘以第一项 乘以x 81 00:03:57,530 --> 00:03:58,790 因此 这里 82 00:03:58,790 --> 00:04:01,300 很显然 我还没完全化简 83 00:04:01,300 --> 00:04:07,360 我还没算出这个等于多少 84 00:04:07,360 --> 00:04:08,030 我只是简单地利用了乘积法则 85 00:04:08,030 --> 00:04:12,320 把第一项求导 86 00:04:12,320 --> 00:04:17,930 x的导数等于1 乘以第二项 加上 87 00:04:17,930 --> 00:04:20,470 第二项的导数 乘以第一项 88 00:04:20,470 --> 00:04:21,190 这是我们做的 89 00:04:21,190 --> 00:04:22,890 因此 db/dx 90 00:04:22,890 --> 00:04:25,010 就是这个 91 00:04:25,010 --> 00:04:27,990 因此 它等于…用黄色 因此 乘以 92 00:04:27,990 --> 00:04:30,380 我还是用蓝色吧 因为前面就是用的蓝色 93 00:04:30,380 --> 00:04:31,310 这是蓝的 94 00:04:31,310 --> 00:04:32,700 db/dx等于y^(-1) 95 00:04:32,700 --> 00:04:35,170 或者1/y 加上d(1/y)dx 乘以x 96 00:04:35,170 --> 00:04:36,560 我把它写下来 97 00:04:36,560 --> 00:04:42,290 因此 我们刚刚算出 或者说差不多算出 98 00:04:42,290 --> 00:04:43,520 da/dx等于多少 99 00:04:43,520 --> 00:04:47,290 我们把它代进去 100 00:04:47,290 --> 00:04:52,580 但是还没做完 101 00:04:52,580 --> 00:04:59,590 1/y的对x求导等于多少 102 00:04:59,590 --> 00:05:01,180 再利用链式法则 103 00:05:01,180 --> 00:05:04,330 我讲清楚一点 104 00:05:04,330 --> 00:05:07,400 我知道这个看起来有点复杂 105 00:05:07,400 --> 00:05:08,450 但我想这是说的通的 106 00:05:08,450 --> 00:05:09,230 我们令c=1/y 107 00:05:09,230 --> 00:05:12,280 因此 dc/dx 利用链式法则 108 00:05:12,280 --> 00:05:14,990 等于 dc/dy 109 00:05:14,990 --> 00:05:17,520 乘以dy/dx 110 00:05:17,520 --> 00:05:18,830 dc/dy等于多少? 111 00:05:18,830 --> 00:05:21,570 它相当于 112 00:05:21,570 --> 00:05:24,020 可以把这个写成y^(-1) 113 00:05:24,020 --> 00:05:28,390 因此 等于-y^(-2) 114 00:05:28,390 --> 00:05:32,550 就是这个 115 00:05:32,550 --> 00:05:35,580 这个是这个 116 00:05:35,580 --> 00:05:40,090 我们不知道dy/dx等于多少 117 00:05:40,090 --> 00:05:43,140 这是我们要求解的 118 00:05:43,140 --> 00:05:44,930 因此 等于它乘以dy/dx 119 00:05:44,930 --> 00:05:46,350 这是从链式法则得到的 120 00:05:46,350 --> 00:05:51,160 因此 这个 121 00:05:51,160 --> 00:05:52,910 这是 这个对x的导数 122 00:05:52,910 --> 00:05:55,740 也就相当于dc/dx 123 00:05:55,740 --> 00:05:57,220 因此 可以把这个写在这儿 124 00:05:57,220 --> 00:05:58,020 可以把这个写成-y^(-2)dy/dx 125 00:05:58,020 --> 00:05:59,690 然后 当然要乘以x 126 00:05:59,690 --> 00:06:02,390 然后加上(1/y) 127 00:06:02,390 --> 00:06:03,540 这整个乘以1/(cosb)^2 128 00:06:03,540 --> 00:06:05,340 现在我们化简得差不多了 129 00:06:05,340 --> 00:06:11,400 希望链式法则不会把你们弄糊涂了 130 00:06:11,400 --> 00:06:13,830 因为我真的想说 所有的 131 00:06:13,830 --> 00:06:15,770 隐式微分 这些dy/dx不需要… 132 00:06:15,770 --> 00:06:19,210 这个不需要记住 133 00:06:19,210 --> 00:06:25,240 它们是从链式法则推导来的 134 00:06:25,240 --> 00:06:28,910 因此我们解出da/dx 等于这个式子 135 00:06:28,910 --> 00:06:33,910 我写一下 它等于1/(cosb)^2 136 00:06:33,910 --> 00:06:38,050 b等于多少?它等于x/y 137 00:06:38,050 --> 00:06:40,660 (cos(x/y))^2 乘以这些东西 138 00:06:40,660 --> 00:06:42,840 乘以这整个 139 00:06:42,840 --> 00:06:45,020 1/y加上 或者应该说减去 140 00:06:45,020 --> 00:06:48,320 把这个整理一下 等于x/y^2 乘以dy/dx 141 00:06:48,320 --> 00:06:50,570 然后 它等于右边 142 00:06:50,570 --> 00:06:52,890 等于1加dy/dx 143 00:06:52,890 --> 00:06:56,930 现在 我们要做的就是求解dy/dx 144 00:06:56,930 --> 00:06:59,230 因此 我们回顾一下 怎么得到的这个 145 00:06:59,230 --> 00:07:07,130 看看链式法则的每一步 146 00:07:07,130 --> 00:07:07,880 但是 如果你们掌握了 147 00:07:07,880 --> 00:07:10,640 你们可以直接到这一步 148 00:07:10,640 --> 00:07:16,920 你们可以这么考虑… 149 00:07:16,920 --> 00:07:19,840 右边你们知道 150 00:07:19,840 --> 00:07:25,670 x的导数等于1 y对x求导 151 00:07:25,670 --> 00:07:32,486 即dy/dx 152 00:07:32,486 --> 00:07:36,660 左边 153 00:07:36,660 --> 00:07:39,000 对这整个对x/y求导 154 00:07:39,000 --> 00:07:48,490 因此 tan的导数等于1/cos^2 155 00:07:48,490 --> 00:07:51,420 因此 等于1/(cos(x/y))^2 156 00:07:51,420 --> 00:07:53,990 把它乘以x/y 157 00:07:53,990 --> 00:07:56,300 对x的导数 158 00:07:56,300 --> 00:07:58,170 x/y对x求导 就是… 159 00:07:58,170 --> 00:07:59,360 有点复杂 160 00:07:59,360 --> 00:08:01,380 这就是为什么我们要写在边上 161 00:08:01,380 --> 00:08:02,033 x的导数 等于1 乘以1/y 162 00:08:02,033 --> 00:08:04,380 也就是这一项 加上1/y对x的导数 163 00:08:04,380 --> 00:08:06,560 即 -1/(y^2)乘以dy/dx 164 00:08:06,560 --> 00:08:09,010 这是根据链式法则得来的 乘以dx 165 00:08:09,010 --> 00:08:11,630 这就是为什么我们要写在边上 166 00:08:11,630 --> 00:08:14,100 这样就不容易粗心 犯错 167 00:08:14,100 --> 00:08:15,020 如果你们熟练之后 168 00:08:15,020 --> 00:08:18,620 你们可以直接在脑子里面做 当然 169 00:08:18,620 --> 00:08:23,530 它等于右边 170 00:08:23,530 --> 00:08:26,770 因此 从这里开始只是单纯的代数了 171 00:08:26,770 --> 00:08:28,970 只要解出dy/dx 172 00:08:28,970 --> 00:08:31,590 因此 先把等式两边乘以 173 00:08:31,590 --> 00:08:34,150 (cos(x/y))^2 174 00:08:34,150 --> 00:08:39,680 因此 很显然 这边变成1 175 00:08:39,680 --> 00:08:44,200 左边变成1/y减去 176 00:08:44,200 --> 00:08:46,620 x/(y^2) 乘以dy/dx 等于… 177 00:08:46,620 --> 00:08:48,140 把方程两边都同时乘以 178 00:08:48,140 --> 00:08:49,360 这里的分母 179 00:08:49,360 --> 00:08:51,410 等于(cosx/y)^2 加上 180 00:08:51,410 --> 00:08:53,980 (cosx/y)^2 乘以dy/dx 181 00:08:53,980 --> 00:08:56,520 现在要怎么做 182 00:08:56,520 --> 00:08:59,140 可以把方程两边 183 00:08:59,140 --> 00:09:01,490 都减去(cosx/y)^2 184 00:09:01,490 --> 00:09:04,910 得到1/y 减去(cosx/y)^2 185 00:09:04,910 --> 00:09:07,420 我只是把方程两边都减去这个 186 00:09:07,420 --> 00:09:14,970 从本质上说是把它移到了左边 187 00:09:14,970 --> 00:09:23,690 我要做的是… 188 00:09:23,690 --> 00:09:26,730 把dy/dx项从非dy/dx项中分离出来 189 00:09:26,730 --> 00:09:32,530 因此 我要把dy/dx项移到右边 190 00:09:32,530 --> 00:09:35,190 因此 把两边都加上x/(y^2) 191 00:09:35,190 --> 00:09:39,420 然后这个等于x/y 192 00:09:39,420 --> 00:09:40,190 把它用原来的颜色写 193 00:09:40,190 --> 00:09:44,210 稍微有点不同的颜色 194 00:09:44,210 --> 00:09:52,110 因此 等于x/(y^2) dy/dx用橙色 195 00:09:52,110 --> 00:09:53,710 dy/dx 然后这一项 196 00:09:53,710 --> 00:09:55,780 加上(cosx/y)^2 乘以dy/dx 197 00:09:55,780 --> 00:09:57,590 我想差不多能算出来了 198 00:09:57,590 --> 00:09:59,040 我们把右边的dy/dx分离出来 199 00:09:59,040 --> 00:10:01,040 因此 这个等于dy/dx 乘以x/(y^2) 加上 200 00:10:01,040 --> 00:10:04,810 (cosx/y)^2 201 00:10:04,810 --> 00:10:06,750 它等于这里这个 202 00:10:06,750 --> 00:10:07,950 等于1/y 减去(cosx/y)^2 203 00:10:07,950 --> 00:10:11,550 现在解dy/dx 只要把方程两边都除以 204 00:10:11,550 --> 00:10:17,260 这个式子 205 00:10:17,260 --> 00:10:21,070 然后得到什么? 206 00:10:21,070 --> 00:10:21,470 得到 如果两边都除以那个式子 207 00:10:21,470 --> 00:10:27,110 得到1/y减去(cosx/y)^2 除以 208 00:10:27,110 --> 00:10:34,120 这整个式子 209 00:10:34,120 --> 00:10:36,880 x/(y^2) 加上(cosx/y)^2 等于dy/dx 210 00:10:36,880 --> 00:10:40,950 然后就做完了 211 00:10:40,950 --> 00:10:43,000 我们只要多次利用链式法则 就能 212 00:10:43,000 --> 00:10:46,410 解出隐式微分 tan(y/x)等于x+y 213 00:10:46,410 --> 00:10:56,770 实际上难的部分是得到这一步 214 00:10:56,770 --> 00:11:01,220 这一步之后就只是单纯的代数了 215 00:11:01,220 --> 00:11:04,180 只要解出dy/dx 216 00:11:04,180 --> 00:11:09,250 然后 得到结果在这儿 217 00:11:09,250 --> 00:11:12,240 不管怎样 希望这对你们有帮助