1 00:00:00,000 --> 00:00:01,030 2 00:00:01,030 --> 00:00:05,980 지난 기출 AP 문제들을 다뤄보자는 제안을 받았습니다. 3 00:00:05,980 --> 00:00:08,550 그리고 인터넷을 들어갔더니 4 00:00:08,550 --> 00:00:11,640 칼리지보드(AP 주최기관) 사이트, collegeboard.com에서 5 00:00:11,640 --> 00:00:14,380 실제 객관식 문제들은 찾을 수 없었지만 6 00:00:14,380 --> 00:00:16,760 주관식 문제는 찾을 수가 있었죠. 7 00:00:16,760 --> 00:00:19,790 그래서 이 문제는 사실 8 00:00:19,790 --> 00:00:23,060 2008년 AP Calculus 9 00:00:23,060 --> 00:00:24,620 .1번 문제입니다. 10 00:00:24,620 --> 00:00:25,990 그럼 이제 문제를 풀어보도록 하죠. 11 00:00:25,990 --> 00:00:28,140 솔직히 여러분이 주관식 문제를 12 00:00:28,140 --> 00:00:32,200 어떻게 해결하는지 이해하면 13 00:00:32,200 --> 00:00:34,840 객관식 문제는 무난할 거에요. 14 00:00:34,840 --> 00:00:36,980 왜냐 하면, 주관식 문제들 그 중에서도 특히 15 00:00:36,980 --> 00:00:38,260 마지막 부분들은 좀 어렵기 때문이죠. 16 00:00:38,260 --> 00:00:40,110 하여간, 이 문제를 한 번 풀어보도록 할게요. 17 00:00:40,110 --> 00:00:42,205 이 문제를 다 쓰기는 좀 번거로우니 18 00:00:42,205 --> 00:00:44,300 그냥 제가 읽을게요 19 00:00:44,300 --> 00:00:48,250 사실 collegeboard.com에 올라와 있는 20 00:00:48,250 --> 00:00:50,360 pdf 파일 일부분을 그냥 복사해서 붙여넣기 한 거에요 21 00:00:50,360 --> 00:00:54,630 그러니까 이 R을 y=sinπx 22 00:00:54,630 --> 00:00:57,390 그래프에 의해 둘러싸인 부분의 넓이라고 합시다 23 00:00:57,390 --> 00:00:58,850 여기에다 쓸게요 24 00:00:58,850 --> 00:01:09,116 이 위쪽에 있는 그래프는 25 00:01:09,116 --> 00:01:22,860 y=sinπx 그래프에요. 26 00:01:22,860 --> 00:01:28,060 그리고 이 아래쪽의 그래프는 27 00:01:28,060 --> 00:01:37,410 y=x^2-4x 그래프에요 28 00:01:37,410 --> 00:01:39,320 이 그래프가 아래쪽 그래프인지 어떻게 알았냐고요? 29 00:01:39,320 --> 00:01:41,780 이 그래프가 y=sinπx 인지 알고 있었기 때문이에요 30 00:01:41,780 --> 00:01:42,840 왜냐 하면, sin 그래프는 이런 모양이기 때문이죠 31 00:01:42,840 --> 00:01:44,910 이 그래프는 그렇게 생기지 않았잖아요, 그렇죠? 32 00:01:44,910 --> 00:01:48,280 sinπ=0 이고 33 00:01:48,280 --> 00:01:50,380 sin(0)=0, sin(2π)=0 34 00:01:50,380 --> 00:01:51,760 그러므로 이게 sinπx가 되는 거에요. 35 00:01:51,760 --> 00:01:55,600 어쨌든 문제에서 요구하는 건 두 그래프 사이의 부분의 넓이에요. 36 00:01:55,600 --> 00:01:59,110 이 문제는 여러분이 정적분을 할 줄 아는 지 테스트 하기 위한 37 00:01:59,110 --> 00:02:01,890 간단한 문제에요 38 00:02:01,890 --> 00:02:07,040 문제에서 R의 넓이를 구하라고 하고 있어요 39 00:02:07,040 --> 00:02:08,890 어떻게 하면 될까요? 40 00:02:08,890 --> 00:02:11,800 정적분 계산이 필요하다는 걸 눈치 채셨겠죠? 41 00:02:11,800 --> 00:02:13,290 그러면 해 봅시다. 42 00:02:13,290 --> 00:02:15,780 정적분을 취할 거니까 43 00:02:15,780 --> 00:02:23,280 이 넓이는 44 00:02:23,280 --> 00:02:26,140 -제 글씨가 잘 보이시나요? 45 00:02:26,140 --> 00:02:28,960 정적분 식을 계산한 것과 같아요. 46 00:02:28,960 --> 00:02:30,150 여기서 x 값이 뭐죠? 47 00:02:30,150 --> 00:02:32,266 x=0 에서부터 48 00:02:32,266 --> 00:02:34,540 x=2 까지를 49 00:02:34,540 --> 00:02:38,890 계산하면 되겠네요 50 00:02:38,890 --> 00:02:40,330 51 00:02:40,330 --> 00:02:44,510 52 00:02:44,510 --> 00:02:46,990 53 00:02:46,990 --> 00:02:50,850 54 00:02:50,850 --> 00:02:52,900 55 00:02:52,900 --> 00:02:55,750 56 00:02:55,750 --> 00:02:56,890 앗! 57 00:02:56,890 --> 00:03:00,730 그러면 우리가 더할 이 직사각형 중의 58 00:03:00,730 --> 00:03:02,070 하나의 넓이가 59 00:03:02,070 --> 00:03:04,110 dx라고 합시다 60 00:03:04,110 --> 00:03:06,220 이 직사각형의 높이는 어떻게 되나요? 61 00:03:06,220 --> 00:03:09,440 높이는 위의 함숫값에서 62 00:03:09,440 --> 00:03:12,340 아래 합숫값을 뺀 것과 같겠죠. 63 00:03:12,340 --> 00:03:15,240 그러면 핵심은 우리가 이 직사각형을 64 00:03:15,240 --> 00:03:18,710 전부 다 더할 때 -잠깐만요 펜 색을 좀 65 00:03:18,710 --> 00:03:22,670 바꿀게요- 사각형의 높이는 66 00:03:22,670 --> 00:03:24,500 (윗쪽 함수) - (아래쪽 함수) 가 될거에요. 67 00:03:24,500 --> 00:03:35,060 그러면 높이는 68 00:03:35,060 --> 00:03:35,720 69 00:03:35,720 --> 00:03:40,250 70 00:03:40,250 --> 00:03:42,810 71 00:03:42,810 --> 00:03:47,270 72 00:03:47,270 --> 00:03:51,010 73 00:03:51,010 --> 00:03:54,670 74 00:03:54,670 --> 00:03:56,810 75 00:03:56,810 --> 00:03:59,510 76 00:03:59,510 --> 00:04:01,610 77 00:04:01,610 --> 00:04:02,850 78 00:04:02,850 --> 00:04:06,080 79 00:04:06,080 --> 00:04:08,870 80 00:04:08,870 --> 00:04:12,590 81 00:04:12,590 --> 00:04:17,900 82 00:04:17,900 --> 00:04:19,100 83 00:04:19,100 --> 00:04:21,420 84 00:04:21,420 --> 00:04:24,960 85 00:04:24,960 --> 00:04:27,090 86 00:04:27,090 --> 00:04:30,590 87 00:04:30,590 --> 00:04:34,200 88 00:04:34,200 --> 00:04:36,320 89 00:04:36,320 --> 00:04:37,980 90 00:04:37,980 --> 00:04:39,120 91 00:04:39,120 --> 00:04:43,130 92 00:04:43,130 --> 00:04:46,230 93 00:04:46,230 --> 00:04:54,440 94 00:04:54,440 --> 00:05:02,080 95 00:05:02,080 --> 00:05:06,810 96 00:05:06,810 --> 00:05:09,270 97 00:05:09,270 --> 00:05:12,150 98 00:05:12,150 --> 00:05:16,440 99 00:05:16,440 --> 00:05:17,690 100 00:05:17,690 --> 00:05:20,730 101 00:05:20,730 --> 00:05:22,400 102 00:05:22,400 --> 00:05:23,225 103 00:05:23,225 --> 00:05:27,180 104 00:05:27,180 --> 00:05:36,880 105 00:05:36,880 --> 00:05:40,020 106 00:05:40,020 --> 00:05:48,100 107 00:05:48,100 --> 00:05:54,370 108 00:05:54,370 --> 00:05:55,200 109 00:05:55,200 --> 00:05:59,810 110 00:05:59,810 --> 00:06:00,910 111 00:06:00,910 --> 00:06:03,370 112 00:06:03,370 --> 00:06:05,780 113 00:06:05,780 --> 00:06:10,070 114 00:06:10,070 --> 00:06:18,620 115 00:06:18,620 --> 00:06:21,320 116 00:06:21,320 --> 00:06:25,590 117 00:06:25,590 --> 00:06:28,330 118 00:06:28,330 --> 00:06:31,770 119 00:06:31,770 --> 00:06:41,300 120 00:06:41,300 --> 00:06:47,250 121 00:06:47,250 --> 00:06:52,620 122 00:06:52,620 --> 00:06:55,260 123 00:06:55,260 --> 00:07:03,510 124 00:07:03,510 --> 00:07:09,930 125 00:07:09,930 --> 00:07:11,680 126 00:07:11,680 --> 00:07:11,960 127 00:07:11,960 --> 00:07:18,170 128 00:07:18,170 --> 00:07:26,750 129 00:07:26,750 --> 00:07:31,020 130 00:07:31,020 --> 00:07:35,460 131 00:07:35,460 --> 00:07:46,470 132 00:07:46,470 --> 00:07:50,630 133 00:07:50,630 --> 00:07:52,540 134 00:07:52,540 --> 00:07:54,880 135 00:07:54,880 --> 00:07:56,250 136 00:07:56,250 --> 00:07:58,620 137 00:07:58,620 --> 00:08:01,110 138 00:08:01,110 --> 00:08:03,090 139 00:08:03,090 --> 00:08:06,490 140 00:08:06,490 --> 00:08:07,070 141 00:08:07,070 --> 00:08:15,670 142 00:08:15,670 --> 00:08:19,900 143 00:08:19,900 --> 00:08:25,840 144 00:08:25,840 --> 00:08:30,570 145 00:08:30,570 --> 00:08:34,210 146 00:08:34,210 --> 00:08:42,830 147 00:08:42,830 --> 00:08:43,920 148 00:08:43,920 --> 00:08:46,090 149 00:08:46,090 --> 00:08:48,550 150 00:08:48,550 --> 00:08:51,115 151 00:08:51,115 --> 00:08:52,690 152 00:08:52,690 --> 00:08:53,333