WEBVTT 00:00:01.230 --> 00:00:04.280 欢迎来到线性方程第四课 00:00:04.280 --> 00:00:06.540 让我们来解题吧 00:00:06.540 --> 00:00:06.710 首先 00:00:06.710 --> 00:00:09.580 假设我有一个情况——让我出几题 00:00:09.580 --> 00:00:20.110 ——假设我有3/x等于5 00:00:20.110 --> 00:00:23.180 我们想要——这道题和我们以前见过的 00:00:23.180 --> 00:00:24.260 题目都不太一样 00:00:24.260 --> 00:00:26.950 因为与其在分子上有x 00:00:26.950 --> 00:00:28.150 我们现在是分母是x 00:00:28.150 --> 00:00:31.270 我自己不太喜欢分母含有x的情况 00:00:31.270 --> 00:00:34.190 所以我们想尽快将其 00:00:34.190 --> 00:00:36.140 从分母上拿出来,或者至少 00:00:36.140 --> 00:00:36.920 去除它 00:00:36.920 --> 00:00:40.780 一个将分母上的数提出来的方法是 00:00:40.780 --> 00:00:45.560 我们可以等式两侧同乘x 00:00:45.560 --> 00:00:47.460 左侧等式的两个x 00:00:47.460 --> 00:00:48.900 就相互抵消 00:00:48.900 --> 00:00:52.160 在右侧,你会得到5乘x 00:00:52.160 --> 00:00:56.920 这等于——两个x低矮下 00:00:56.920 --> 00:01:00.890 你得到3等于5x 00:01:00.890 --> 00:01:05.420 现在,我们也可以将其写成5x等于3 00:01:05.420 --> 00:01:07.810 然后我们有两种思考方法 00:01:07.810 --> 00:01:12.210 我们可以两侧同时乘以1/5,或者你可以 00:01:12.210 --> 00:01:14.230 同除以5 00:01:14.230 --> 00:01:16.490 如果你两侧同乘以1/5 00:01:16.490 --> 00:01:18.680 左手边变成x 00:01:18.680 --> 00:01:23.740 右手边是3乘以1/5,等于3/5 00:01:23.740 --> 00:01:24.640 我们这做了什么? 00:01:24.640 --> 00:01:26.860 这就很快变成第二节课 00:01:26.860 --> 00:01:28.670 的题目,或者第一节课 00:01:28.670 --> 00:01:29.480 的题目 00:01:29.480 --> 00:01:31.990 我们只需要两侧同时 00:01:31.990 --> 00:01:33.260 乘以x 00:01:33.260 --> 00:01:35.460 我们就把x从分母上去除了 00:01:35.460 --> 00:01:36.360 我们再做一题 00:01:41.110 --> 00:01:53.530 假设我们有x加3除以x加1 00:01:53.530 --> 00:01:58.800 等于7 00:01:58.800 --> 00:02:00.790 这里的分母上不是只有x 00:02:00.790 --> 00:02:02.920 分母时x加1 00:02:02.920 --> 00:02:05.000 但我们的步骤一样 00:02:05.000 --> 00:02:09.170 要把x+1从分母上拿出来,我们可以 00:02:09.170 --> 00:02:15.450 灯饰两侧同时乘以x+1除以1 00:02:15.450 --> 00:02:17.010 既然我们左侧已经乘了 00:02:17.010 --> 00:02:19.640 右侧也得这样,就是7/1 00:02:19.640 --> 00:02:24.420 乘以x+1除以1 00:02:24.420 --> 00:02:27.720 左侧,x+1抵消 00:02:27.720 --> 00:02:31.110 只留下x+2 00:02:31.110 --> 00:02:33.300 除以1,但你可以忽略这个1 00:02:33.300 --> 00:02:39.260 这等于7乘以x+1 00:02:39.260 --> 00:02:41.930 这等于x+2 00:02:41.930 --> 00:02:45.720 记住,这是7乘以整个x+1 00:02:45.720 --> 00:02:47.790 所以我们得使用分配法则 00:02:47.790 --> 00:02:54.400 这等于7x加7 00:02:54.400 --> 00:02:57.200 现在,我们变成了一个 00:02:57.200 --> 00:02:58.790 三级方程 00:02:58.790 --> 00:03:02.050 我们现在要把所有x项 00:03:02.050 --> 00:03:02.965 放到等式左侧 00:03:02.965 --> 00:03:05.570 所有常数项,类似2和7, 00:03:05.570 --> 00:03:07.100 移到等式右侧 00:03:07.100 --> 00:03:08.890 我们首先把x移到左侧 00:03:08.890 --> 00:03:10.990 要把7x放到左侧 00:03:10.990 --> 00:03:14.450 我们可以两侧同时减7x 00:03:14.450 --> 00:03:19.440 负7x,加,这是负7x 00:03:19.440 --> 00:03:22.800 右手边,两个7x抵消 00:03:22.800 --> 00:03:26.410 左手边就时负7x加x 00:03:26.410 --> 00:03:32.840 就是负6x加2等于 00:03:32.840 --> 00:03:35.080 右侧剩下的7 00:03:35.080 --> 00:03:36.470 现在我们需要去掉2 00:03:36.470 --> 00:03:41.360 我们可以两侧同时减2 00:03:41.360 --> 00:03:48.000 剩下来的就是负6x等于6 00:03:48.000 --> 00:03:49.220 这是一级问题 00:03:49.220 --> 00:03:52.410 我们只需要两侧同时乘以 00:03:52.410 --> 00:03:54.200 左侧的因数的倒数 00:03:54.200 --> 00:03:56.150 因数是负6 00:03:56.150 --> 00:03:59.620 所以我们两侧同乘以负1/6 00:04:02.540 --> 00:04:05.610 负1/6 00:04:05.610 --> 00:04:08.890 左手边是负1/6乘以负6 00:04:08.890 --> 00:04:10.190 也就是1 00:04:10.190 --> 00:04:16.130 所以我们得到x等于5乘以负1/6 00:04:16.130 --> 00:04:19.250 就是负5/6 00:04:22.270 --> 00:04:23.210 题目结束 00:04:23.210 --> 00:04:25.710 如果你想要验算,你可以把 00:04:25.710 --> 00:04:28.950 x等于负5/6带回到原方程 00:04:28.950 --> 00:04:30.580 去检查一下是否成立 00:04:30.580 --> 00:04:31.340 让我们再做一题 00:04:34.610 --> 00:04:37.940 我临时想的题目,不好意思 00:04:37.940 --> 00:04:40.020 让我想想 00:04:40.020 --> 00:04:51.010 3乘以x加5等于8乘以x加2 00:04:51.010 --> 00:04:52.740 我们干同样的事 00:04:52.740 --> 00:04:55.950 虽然我们现在分母上有两个表达式 00:04:55.950 --> 00:04:56.680 我们都想提取出来 00:04:56.680 --> 00:04:58.870 我们想要把x+5提出来,我们想要 00:04:58.870 --> 00:05:00.010 把这个x+2也提出来 00:05:00.010 --> 00:05:01.670 首先做一下x+5 00:05:01.670 --> 00:05:03.640 就和之前一样,我们两侧同时 00:05:03.640 --> 00:05:05.570 乘以x+5 00:05:05.570 --> 00:05:07.630 你可以看成x+5除以1 00:05:07.630 --> 00:05:12.680 乘以x+5除以1 00:05:12.680 --> 00:05:15.080 在左侧,它们互相抵消 00:05:15.080 --> 00:05:24.230 剩下来的是3乘以8乘以x+5 00:05:24.230 --> 00:05:28.770 这个这个除以x+2 00:05:28.770 --> 00:05:31.820 现在,简化上面, 00:05:31.820 --> 00:05:34.420 我们只需要把8乘以整个表达式 00:05:34.420 --> 00:05:41.860 也就是8x加40除以x+2 00:05:41.860 --> 00:05:43.500 现在,我们去掉这个x+2 00:05:43.500 --> 00:05:44.510 我们用一样的方法 00:05:44.510 --> 00:05:46.505 我们两侧同时乘以 00:05:46.505 --> 00:05:50.904 x+2出1 00:05:50.904 --> 00:05:52.580 x+2 00:05:52.580 --> 00:05:53.690 我们可以看成两侧同乘 00:05:53.690 --> 00:05:54.420 x+2 00:05:54.420 --> 00:05:56.630 1是非必要的 00:05:56.630 --> 00:06:02.910 所以左侧变成3x加6 00:06:02.910 --> 00:06:05.070 记住,要把3分配进去,因为 00:06:05.070 --> 00:06:07.030 你是乘整个表达式 00:06:07.030 --> 00:06:08.540 x+2 00:06:08.540 --> 00:06:09.860 在右侧 00:06:09.860 --> 00:06:13.620 我们有x+2,和这个x+2相互抵消 00:06:13.620 --> 00:06:16.380 剩下来8x加40 00:06:16.380 --> 00:06:19.340 现在变成了三级问题 00:06:19.340 --> 00:06:25.380 如果我们两侧同减去8x,减8x,加—— 00:06:25.380 --> 00:06:26.970 我觉得我没空间了 00:06:26.970 --> 00:06:28.470 减8x 00:06:28.470 --> 00:06:31.290 右侧的8x互相抵消 00:06:31.290 --> 00:06:38.620 左边我们有负5x加6等于 00:06:38.620 --> 00:06:42.320 右侧剩下的40 00:06:42.320 --> 00:06:45.380 现在我们可以等式两侧同减去6 00:06:45.380 --> 00:06:46.380 让我下出来 00:06:46.380 --> 00:06:49.510 减6x加负6 00:06:49.510 --> 00:06:51.470 现在,希望我没有太快 00:06:51.470 --> 00:06:53.160 把你们丢下 00:06:55.720 --> 00:06:58.410 但如果我们两侧减去负6,在左边 00:06:58.410 --> 00:07:05.280 我们只剩下了负5x等于, 00:07:05.280 --> 00:07:08.780 在右边,我们有34 00:07:08.780 --> 00:07:09.880 现在变成了一级问题 00:07:09.880 --> 00:07:12.780 我们只需要两侧同时乘以负1/5 00:07:16.510 --> 00:07:18.360 负1/5 00:07:18.360 --> 00:07:21.130 在左边我们有x 00:07:21.130 --> 00:07:27.130 在右边我们有负34/5 00:07:27.130 --> 00:07:29.640 除非我大意出错,应该是对的 00:07:29.640 --> 00:07:33.190 我觉得你应该理解了我们这里的过程 00:07:33.190 --> 00:07:36.780 你现在应该准备好了解四级线性方程 00:07:36.780 --> 00:07:38.290 祝你好运