[Script Info] Title: [Events] Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text Dialogue: 0,0:00:00.08,0:00:01.59,Default,,0000,0000,0000,,- [Instructor] What we're\Ngoing to do in this video Dialogue: 0,0:00:01.59,0:00:03.33,Default,,0000,0000,0000,,is look at the tangible example Dialogue: 0,0:00:03.33,0:00:05.81,Default,,0000,0000,0000,,where we calculate angular velocity, Dialogue: 0,0:00:05.81,0:00:08.32,Default,,0000,0000,0000,,but then we're going to\Nsee if we can connect that Dialogue: 0,0:00:08.32,0:00:10.55,Default,,0000,0000,0000,,to the notion of speed. Dialogue: 0,0:00:10.55,0:00:13.08,Default,,0000,0000,0000,,So let's start with this\Nexample where once again Dialogue: 0,0:00:13.08,0:00:15.61,Default,,0000,0000,0000,,we have some type of a ball tethered Dialogue: 0,0:00:15.61,0:00:18.69,Default,,0000,0000,0000,,to some type of center of\Nrotation right over here. Dialogue: 0,0:00:18.69,0:00:21.16,Default,,0000,0000,0000,,Let's say this is connected with a string. Dialogue: 0,0:00:21.16,0:00:22.78,Default,,0000,0000,0000,,And so if you were to\Nmove the ball around, Dialogue: 0,0:00:22.78,0:00:27.36,Default,,0000,0000,0000,,it would move along this blue\Ncircle in either direction. Dialogue: 0,0:00:27.36,0:00:28.96,Default,,0000,0000,0000,,Let's just say for the sake of argument, Dialogue: 0,0:00:28.96,0:00:32.15,Default,,0000,0000,0000,,the length of the string is seven meters. Dialogue: 0,0:00:32.15,0:00:36.07,Default,,0000,0000,0000,,We know that at time is\Nequal to three seconds, Dialogue: 0,0:00:37.22,0:00:39.06,Default,,0000,0000,0000,,our angle is equal to, Dialogue: 0,0:00:41.23,0:00:44.87,Default,,0000,0000,0000,,theta is equal to pi over two radians, Dialogue: 0,0:00:44.87,0:00:46.29,Default,,0000,0000,0000,,which we've seen in previous videos. Dialogue: 0,0:00:46.29,0:00:51.06,Default,,0000,0000,0000,,We would measure from the\Npositive x-axis, just like that. Dialogue: 0,0:00:51.06,0:00:55.89,Default,,0000,0000,0000,,And let's say that at T\Nis equal to six seconds, Dialogue: 0,0:00:55.89,0:01:00.06,Default,,0000,0000,0000,,T is equal to six seconds,\Ntheta is equal to pi radians. Dialogue: 0,0:01:01.63,0:01:05.80,Default,,0000,0000,0000,,And so after three seconds, the\Nball is now right over here. Dialogue: 0,0:01:08.27,0:01:12.16,Default,,0000,0000,0000,,And so if we wanted to actually\Nvisualize how that happens, Dialogue: 0,0:01:12.16,0:01:15.89,Default,,0000,0000,0000,,let me see if I can rotate\Nthis ball in three seconds. Dialogue: 0,0:01:15.89,0:01:17.57,Default,,0000,0000,0000,,So it would look like this. Dialogue: 0,0:01:17.57,0:01:20.90,Default,,0000,0000,0000,,One Mississippi, two\NMississippi, three Mississippi. Dialogue: 0,0:01:20.90,0:01:22.26,Default,,0000,0000,0000,,Let's do that again. Dialogue: 0,0:01:22.26,0:01:23.43,Default,,0000,0000,0000,,It would be... Dialogue: 0,0:01:24.50,0:01:28.68,Default,,0000,0000,0000,,One Mississippi, two\NMississippi, three Mississippi. Dialogue: 0,0:01:28.68,0:01:30.82,Default,,0000,0000,0000,,So now that we can visualize Dialogue: 0,0:01:30.82,0:01:33.18,Default,,0000,0000,0000,,or conceptualize what's going on, Dialogue: 0,0:01:33.18,0:01:37.02,Default,,0000,0000,0000,,see if you can pause this\Nvideo and calculate two things. Dialogue: 0,0:01:37.02,0:01:40.01,Default,,0000,0000,0000,,So the first thing that I\Nwant you to calculate is Dialogue: 0,0:01:40.01,0:01:43.42,Default,,0000,0000,0000,,what is the angular velocity of the ball? Dialogue: 0,0:01:44.32,0:01:45.39,Default,,0000,0000,0000,,And actually, it would be the ball Dialogue: 0,0:01:45.39,0:01:47.37,Default,,0000,0000,0000,,and every point on that string. Dialogue: 0,0:01:47.37,0:01:51.44,Default,,0000,0000,0000,,What is that angular velocity\Nwhich we denote with omega? Dialogue: 0,0:01:51.44,0:01:53.20,Default,,0000,0000,0000,,And then I want you to figure out Dialogue: 0,0:01:53.20,0:01:56.32,Default,,0000,0000,0000,,what is the speed of the ball? Dialogue: 0,0:01:56.32,0:01:58.39,Default,,0000,0000,0000,,So what is the speed? Dialogue: 0,0:01:58.39,0:02:00.41,Default,,0000,0000,0000,,See if you can figure\Nout both of those things, Dialogue: 0,0:02:00.41,0:02:03.00,Default,,0000,0000,0000,,and for extra points,\Nsee if you can figure out Dialogue: 0,0:02:03.00,0:02:05.56,Default,,0000,0000,0000,,a relationship between the two. Dialogue: 0,0:02:05.56,0:02:07.91,Default,,0000,0000,0000,,Alright, well let's go\Nangular velocity first. Dialogue: 0,0:02:07.91,0:02:09.90,Default,,0000,0000,0000,,I'm assuming you've had a go at it. Dialogue: 0,0:02:09.90,0:02:12.74,Default,,0000,0000,0000,,Angular velocity, you might remember Dialogue: 0,0:02:12.74,0:02:16.97,Default,,0000,0000,0000,,is just going to be equal\Nto our angular displacement, Dialogue: 0,0:02:16.97,0:02:19.42,Default,,0000,0000,0000,,which we could say is delta theta, Dialogue: 0,0:02:19.42,0:02:21.89,Default,,0000,0000,0000,,and it is a vector quantity. Dialogue: 0,0:02:21.89,0:02:26.06,Default,,0000,0000,0000,,And we are going to divide\Nthat by our change in time. Dialogue: 0,0:02:27.94,0:02:29.58,Default,,0000,0000,0000,,So delta T. Dialogue: 0,0:02:29.58,0:02:30.87,Default,,0000,0000,0000,,And so what is this going to be? Dialogue: 0,0:02:30.87,0:02:34.10,Default,,0000,0000,0000,,Well this is going to be\Nour angular displacement. Dialogue: 0,0:02:34.10,0:02:35.94,Default,,0000,0000,0000,,Our final angle is pi. Dialogue: 0,0:02:36.98,0:02:41.82,Default,,0000,0000,0000,,Pi radians minus our initial\Nangle, pi over two radians. Dialogue: 0,0:02:41.82,0:02:45.02,Default,,0000,0000,0000,,And then all of that's going\Nto be over our change in time, Dialogue: 0,0:02:45.02,0:02:47.53,Default,,0000,0000,0000,,which is six seconds,\Nwhich is our final time Dialogue: 0,0:02:47.53,0:02:49.98,Default,,0000,0000,0000,,minus our initial time,\Nminus three seconds. Dialogue: 0,0:02:49.98,0:02:53.08,Default,,0000,0000,0000,,And so we are going to\Nget in the numerator, Dialogue: 0,0:02:53.08,0:02:56.14,Default,,0000,0000,0000,,we have been rotated in\Nthe positive direction, Dialogue: 0,0:02:56.14,0:02:58.07,Default,,0000,0000,0000,,Pi over two radians. Dialogue: 0,0:02:58.07,0:03:01.63,Default,,0000,0000,0000,,Because it's positive, we\Nknow it's counterclockwise. Dialogue: 0,0:03:01.63,0:03:04.71,Default,,0000,0000,0000,,And that happened over three seconds. Dialogue: 0,0:03:05.56,0:03:08.20,Default,,0000,0000,0000,,And so we could rewrite this as Dialogue: 0,0:03:08.20,0:03:11.46,Default,,0000,0000,0000,,this is going to be equal to pi over six. Dialogue: 0,0:03:11.46,0:03:13.74,Default,,0000,0000,0000,,And let's remind\Nourselves about the units. Dialogue: 0,0:03:13.74,0:03:17.16,Default,,0000,0000,0000,,Our change in angle, that's\Ngoing to be in radians, Dialogue: 0,0:03:17.16,0:03:20.100,Default,,0000,0000,0000,,and then that is going to be per second. Dialogue: 0,0:03:20.100,0:03:23.60,Default,,0000,0000,0000,,So we're going pi over\Nsix radians per second, Dialogue: 0,0:03:23.60,0:03:25.40,Default,,0000,0000,0000,,and if you do that over three seconds, Dialogue: 0,0:03:25.40,0:03:29.48,Default,,0000,0000,0000,,well then you're going to\Ngo pi over two radians. Dialogue: 0,0:03:31.04,0:03:32.93,Default,,0000,0000,0000,,Now with that out of the way, Dialogue: 0,0:03:32.93,0:03:34.70,Default,,0000,0000,0000,,let's see if we can calculate speed. Dialogue: 0,0:03:34.70,0:03:36.96,Default,,0000,0000,0000,,If you haven't done so\Nalready, pause this video Dialogue: 0,0:03:36.96,0:03:39.03,Default,,0000,0000,0000,,and see if you can calculate it. Dialogue: 0,0:03:39.03,0:03:43.00,Default,,0000,0000,0000,,Well speed is going to\Nbe equal to the distance Dialogue: 0,0:03:43.00,0:03:45.69,Default,,0000,0000,0000,,the ball travels, and we've\Ntouched on that in other videos. Dialogue: 0,0:03:45.69,0:03:48.26,Default,,0000,0000,0000,,I encourage you to watch\Nthose if you haven't already. Dialogue: 0,0:03:48.26,0:03:52.82,Default,,0000,0000,0000,,The distance that we travel\Nwe could denote with S. Dialogue: 0,0:03:52.82,0:03:55.06,Default,,0000,0000,0000,,S is sometimes used to denote arc length, Dialogue: 0,0:03:55.06,0:03:57.34,Default,,0000,0000,0000,,or the distance traveled right over here. Dialogue: 0,0:03:57.34,0:03:59.84,Default,,0000,0000,0000,,So the speed is going to be our arc length Dialogue: 0,0:03:59.84,0:04:02.84,Default,,0000,0000,0000,,divided by our change in time. Dialogue: 0,0:04:02.84,0:04:05.45,Default,,0000,0000,0000,,Divided by our change in time. Dialogue: 0,0:04:05.45,0:04:08.15,Default,,0000,0000,0000,,But what is our arc length going to be? Dialogue: 0,0:04:08.15,0:04:09.90,Default,,0000,0000,0000,,Well we saw in a previous video Dialogue: 0,0:04:09.90,0:04:13.25,Default,,0000,0000,0000,,where we related angular\Ndisplacement to arc length, Dialogue: 0,0:04:13.25,0:04:16.14,Default,,0000,0000,0000,,or distance, that our arc\Nlength is nothing more Dialogue: 0,0:04:16.14,0:04:20.31,Default,,0000,0000,0000,,than the absolute value of\Nour angular displacement, Dialogue: 0,0:04:23.78,0:04:27.58,Default,,0000,0000,0000,,of our angular displacement,\Ntimes the radius. Dialogue: 0,0:04:27.58,0:04:29.12,Default,,0000,0000,0000,,Times the radius. Dialogue: 0,0:04:29.12,0:04:31.81,Default,,0000,0000,0000,,And in this case, our radius\Nwould be seven meters. Dialogue: 0,0:04:31.81,0:04:34.76,Default,,0000,0000,0000,,So if we substitute all of this up here, Dialogue: 0,0:04:34.76,0:04:36.31,Default,,0000,0000,0000,,what are we going to get? Dialogue: 0,0:04:36.31,0:04:39.23,Default,,0000,0000,0000,,We are going to get that our speed, Dialogue: 0,0:04:40.20,0:04:42.46,Default,,0000,0000,0000,,I'm writing it out because\NI don't want to overuse, Dialogue: 0,0:04:42.46,0:04:43.66,Default,,0000,0000,0000,,well I am overusing S, Dialogue: 0,0:04:43.66,0:04:45.26,Default,,0000,0000,0000,,but I don't want people to get confused. Dialogue: 0,0:04:45.26,0:04:48.15,Default,,0000,0000,0000,,Our speed is going to be equal\Nto the distance we travel, Dialogue: 0,0:04:48.15,0:04:50.79,Default,,0000,0000,0000,,which we just wrote is the magnitude Dialogue: 0,0:04:50.79,0:04:52.18,Default,,0000,0000,0000,,of our angular displacement. Dialogue: 0,0:04:52.18,0:04:53.55,Default,,0000,0000,0000,,And this is all fancy notation, Dialogue: 0,0:04:53.55,0:04:56.43,Default,,0000,0000,0000,,but when you actually apply it,\Nit's pretty straightforward. Dialogue: 0,0:04:56.43,0:04:59.02,Default,,0000,0000,0000,,Times the radius of the circle. Dialogue: 0,0:04:59.89,0:05:03.92,Default,,0000,0000,0000,,I guess you can say we\Nare traveling along. Dialogue: 0,0:05:03.92,0:05:06.14,Default,,0000,0000,0000,,Let me write that in a different color. Dialogue: 0,0:05:06.14,0:05:08.63,Default,,0000,0000,0000,,So times the radius. Dialogue: 0,0:05:08.63,0:05:11.63,Default,,0000,0000,0000,,All of that over our change in time. Dialogue: 0,0:05:12.66,0:05:15.07,Default,,0000,0000,0000,,All of that over our change in time. Dialogue: 0,0:05:15.07,0:05:17.48,Default,,0000,0000,0000,,Well we could put in the\Nnumbers right over here. Dialogue: 0,0:05:17.48,0:05:21.03,Default,,0000,0000,0000,,We know that this is\Ngoing to be pi over two. Dialogue: 0,0:05:21.03,0:05:22.21,Default,,0000,0000,0000,,You take the absolute value of that. Dialogue: 0,0:05:22.21,0:05:23.98,Default,,0000,0000,0000,,It's still going to be pi over two. Dialogue: 0,0:05:23.98,0:05:26.41,Default,,0000,0000,0000,,We know that our radius in this case Dialogue: 0,0:05:26.41,0:05:27.76,Default,,0000,0000,0000,,is the length of that string. Dialogue: 0,0:05:27.76,0:05:29.29,Default,,0000,0000,0000,,It is seven meters. Dialogue: 0,0:05:29.29,0:05:31.63,Default,,0000,0000,0000,,And we know that our change in time here, Dialogue: 0,0:05:31.63,0:05:34.84,Default,,0000,0000,0000,,we know that this over here\Nis going to be three seconds, Dialogue: 0,0:05:34.84,0:05:36.68,Default,,0000,0000,0000,,and we can calculate everything. Dialogue: 0,0:05:36.68,0:05:39.66,Default,,0000,0000,0000,,But what's even more\Ninteresting is to recognize Dialogue: 0,0:05:39.66,0:05:42.50,Default,,0000,0000,0000,,that what is this right over here? Dialogue: 0,0:05:45.80,0:05:48.50,Default,,0000,0000,0000,,What is the absolute value\Nof our angular displacement Dialogue: 0,0:05:48.50,0:05:50.17,Default,,0000,0000,0000,,over change in time? Dialogue: 0,0:05:51.06,0:05:53.07,Default,,0000,0000,0000,,Well, this is just the absolute value Dialogue: 0,0:05:53.07,0:05:55.57,Default,,0000,0000,0000,,of our angular velocity. Dialogue: 0,0:05:55.57,0:05:57.74,Default,,0000,0000,0000,,So we could say that speed Dialogue: 0,0:05:59.92,0:06:04.72,Default,,0000,0000,0000,,is equal to the absolute\Nvalue of our angular velocity. Dialogue: 0,0:06:04.72,0:06:09.60,Default,,0000,0000,0000,,Absolute value of our angular\Nvelocity, times our radius. Dialogue: 0,0:06:09.60,0:06:11.02,Default,,0000,0000,0000,,Times our radius. Dialogue: 0,0:06:12.30,0:06:14.43,Default,,0000,0000,0000,,And now so this is super useful. Dialogue: 0,0:06:14.43,0:06:19.28,Default,,0000,0000,0000,,Our speed in this case,\Nis going to be pi over six Dialogue: 0,0:06:19.28,0:06:20.86,Default,,0000,0000,0000,,radians per second. Dialogue: 0,0:06:22.37,0:06:23.29,Default,,0000,0000,0000,,So pi over, Dialogue: 0,0:06:25.97,0:06:26.97,Default,,0000,0000,0000,,pi over six. Dialogue: 0,0:06:28.27,0:06:30.15,Default,,0000,0000,0000,,Times the radius. Dialogue: 0,0:06:30.15,0:06:32.40,Default,,0000,0000,0000,,Times seven meters. Dialogue: 0,0:06:32.40,0:06:34.47,Default,,0000,0000,0000,,Times seven meters. Dialogue: 0,0:06:34.47,0:06:36.30,Default,,0000,0000,0000,,And so what do we get? Dialogue: 0,0:06:36.30,0:06:40.39,Default,,0000,0000,0000,,We are going to get seven\Npi over six meters per, Dialogue: 0,0:06:43.76,0:06:47.93,Default,,0000,0000,0000,,meters per second, which will\Nbe our units for speed here. Dialogue: 0,0:06:48.83,0:06:50.94,Default,,0000,0000,0000,,And the reason why we're\Ndoing the absolute value Dialogue: 0,0:06:50.94,0:06:53.61,Default,,0000,0000,0000,,is 'cause remember, speed\Nis a scalar quantity. Dialogue: 0,0:06:53.61,0:06:55.49,Default,,0000,0000,0000,,We're not specifying the direction. Dialogue: 0,0:06:55.49,0:06:56.85,Default,,0000,0000,0000,,In fact, the whole time we're traveling, Dialogue: 0,0:06:56.85,0:06:59.22,Default,,0000,0000,0000,,our direction is constantly changing. Dialogue: 0,0:06:59.22,0:07:00.41,Default,,0000,0000,0000,,So there you have it. Dialogue: 0,0:07:00.41,0:07:03.49,Default,,0000,0000,0000,,There's multiple ways to approach\Nthese types of questions, Dialogue: 0,0:07:03.49,0:07:05.48,Default,,0000,0000,0000,,but the big takeaway here is one, Dialogue: 0,0:07:05.48,0:07:07.68,Default,,0000,0000,0000,,how we calculated angular velocity, Dialogue: 0,0:07:07.68,0:07:12.59,Default,,0000,0000,0000,,and then how we can relate\Nangular velocity to speed. Dialogue: 0,0:07:12.59,0:07:15.85,Default,,0000,0000,0000,,And what's nice is there's a\Nnice, simple formula for it. Dialogue: 0,0:07:15.85,0:07:18.00,Default,,0000,0000,0000,,And all of this just came out of something Dialogue: 0,0:07:18.00,0:07:20.08,Default,,0000,0000,0000,,that relates to what we\Nlearned in seventh grade Dialogue: 0,0:07:20.08,0:07:21.81,Default,,0000,0000,0000,,around the circumference of the circle, Dialogue: 0,0:07:21.81,0:07:23.84,Default,,0000,0000,0000,,which we touched on in the video Dialogue: 0,0:07:23.84,0:07:27.68,Default,,0000,0000,0000,,relating angular\Ndisplacement to arc length, Dialogue: 0,0:07:27.68,0:07:29.42,Default,,0000,0000,0000,,or distance traveled.