0:00:00.299,0:00:04.644 [讲师] 因果推断之路径既黑暗又危险 0:00:05.139,0:00:08.015 但是计量经济学是很厉害的武器 0:00:08.480,0:00:11.734 当自然界给你带来偶然的随机分配时 0:00:11.734,0:00:15.803 使用气势汹汹与灵活多變的[br]工具变量进行攻击 0:00:23.653,0:00:26.362 随机试验是完成[br]“其他条件不变”的比较 0:00:26.362,0:00:28.704 的最可靠途径 0:00:28.704,0:00:32.640 但我们经常无法使用[br]这个功能强大的工具 0:00:33.224,0:00:36.940 但是有时候,随机是偶然发生的 0:00:36.940,0:00:40.592 这时候我们转向工具变量 0:00:40.592,0:00:41.938 —简称IV 0:00:41.938,0:00:44.508 工具变量 0:00:44.508,0:00:48.186 今天的课堂是IV两节课的第一节 0:00:48.958,0:00:52.801 我们的第一节IV课[br]从学校的故事开始 0:00:54.348,0:00:56.138 特许学校是一些公立学校 0:00:56.138,0:01:00.112 不受日常学区监督[br]与教师工会合同约束 0:01:00.895,0:01:03.511 特许学校能否提高成绩 0:01:03.511,0:01:05.161 是美国教育改革史上 0:01:05.161,0:01:07.761 最重要的问题之一 0:01:08.145,0:01:12.562 最受欢迎的特许学校的申请人数[br]远多于学位 0:01:12.562,0:01:16.462 因此抽奖运决定了[br]谁家孩子可获录取 0:01:16.870,0:01:20.695 在学生争夺机会时需要面对很多风险 0:01:20.695,0:01:25.003 正如获奖纪录片“等待超人”中 0:01:25.003,0:01:27.832 所描述的那样 0:01:27.832,0:01:29.699 等待结果时会产生很多种情绪 0:01:30.258,0:01:32.916 别哭,你会让妈妈哭的[br]好吗? 0:01:37.498,0:01:40.618 特许学校真的能提供更好的教育吗? 0:01:40.948,0:01:43.183 评论家肯定会说"不是的" 0:01:43.413,0:01:46.586 他们会争辩说特许学校[br]能夠招募更好 0:01:46.586,0:01:50.164 更聪明或更主动的学生[br]因此以后结果的差异 0:01:50.164,0:01:52.061 反映了选择性偏差 0:01:52.595,0:01:54.729 等一下,这个似乎很容易 0:01:55.139,0:01:57.639 在抽奖活动中[br]我们会随机选择优胜者 0:01:57.639,0:02:00.083 因此只比较赢家和输家[br]很明显的 0:02:00.083,0:02:01.784 卡马尔,你的想法是好的 0:02:01.784,0:02:04.375 但是特许学校的抽签安排 0:02:04.375,0:02:07.560 不会强迫孩子们进入[br]或离开特定的学校 0:02:07.749,0:02:10.667 他们随机分配了特许学校的学位 0:02:11.650,0:02:13.449 有些孩子很幸运 0:02:13.449,0:02:14.966 有些孩子不是 0:02:14.966,0:02:17.235 如果我们只是想知道特许学校 0:02:17.235,0:02:19.202 所带来的影响 0:02:19.202,0:02:22.417 我们可以将其视为随机试验 0:02:22.717,0:02:24.684 但是,我们只对特许学校[br]就学的影响 0:02:24.684,0:02:27.042 感兴趣 0:02:27.042,0:02:28.283 而对录取不感兴趣 0:02:28.568,0:02:32.039 并非所有获录取的学生[br]都会接受学位 0:02:32.039,0:02:37.234 IV将被录取为特许学校学生的影响 0:02:37.234,0:02:40.367 转变为实际就读特许学校的影响 0:02:40.367,0:02:42.344 - 太酷了[br]- 哦,太好了 0:02:45.925,0:02:48.871 让我们看一个例子 0:02:48.871,0:02:52.353 这是一所执行知识就是力量专案[br]的特许学校,或简称为KIPP 0:02:52.736,0:02:54.937 这所KIPP特许学校位于林恩 0:02:54.937,0:02:58.837 一座位于麻省海边的[br]褪色工业城镇 0:02:59.104,0:03:01.886 这所学校的申请者多于学位 0:03:01.886,0:03:05.620 因此他们要抽签来挑选学生 0:03:05.834,0:03:11.854 从2005年到2008年[br]共有371名四年级以及五年级生 0:03:11.854,0:03:15.350 参加了KIPP林恩的抽签 0:03:15.350,0:03:18.805 当中253名学生KIPP获录取 0:03:18.805,0:03:21.651 118名学生未获录取 0:03:21.967,0:03:26.001 一年后,获录取者的数学分数 0:03:26.001,0:03:27.852 比未获录取者更高 0:03:27.852,0:03:30.466 我们并不是试图弄清楚 0:03:30.466,0:03:33.803 获录取后是否会提高[br]你的数学水平 0:03:34.070,0:03:38.471 我们想知道参加KIPP[br]是否会使你的数学成绩改进 0:03:39.041,0:03:45.750 在253位获录取者中[br]实际上只有199位到KIPP上学 0:03:46.139,0:03:48.804 其他学生选择了传统的公立学校 0:03:49.563,0:03:55.536 同样,在118名未被录取的学生中[br]事实上有一些最终参加了KIPP 0:03:55.536,0:03:57.452 他们后来也获录取 0:03:57.452,0:04:00.044 那么,实际上参加KIPP 0:04:00.044,0:04:02.377 对考试成绩有何影响呢? 0:04:03.109,0:04:05.426 为什么我们不能只衡量[br]他们的数学成绩? 0:04:05.894,0:04:07.235 这是很好的问题 0:04:07.235,0:04:09.302 你将他们与谁进行比较呢? 0:04:09.302,0:04:11.111 那些没有参加的学生 0:04:11.111,0:04:12.944 上学率是随机的吗? 0:04:14.161,0:04:16.177 - 不是啊[br]- 选择性偏差 0:04:16.177,0:04:17.909 - 对啊[br]- 什么? 0:04:17.909,0:04:21.826 KIPP的录取是随机的,因此我们[br]对“其他条件不变”的假设充满信心 0:04:21.826,0:04:26.409 但上学率不是随机的 0:04:26.635,0:04:30.626 选择接受录取通知 0:04:30.626,0:04:32.984 可能是与数学成绩有关的特征 0:04:33.251,0:04:36.157 例如,有奉献精神的父母 0:04:36.157,0:04:38.957 更有可能接受录取 0:04:38.957,0:04:42.646 无论上那间学校 0:04:42.646,0:04:44.090 他们的孩子的数学成绩[br]也有可能更好 0:04:44.090,0:04:45.114 对啊 0:04:45.114,0:04:47.725 IV将录取的影响 0:04:47.725,0:04:50.567 转化为KIPP上学率的影响 0:04:50.573,0:04:53.371 并就一些获录取者到其他学校上学 0:04:53.371,0:04:56.573 而一些未被录取者还是设法[br]参加了KIPP 而进行调整 0:04:56.950,0:05:00.517 本质上,IV需要进行不完全的随机化 0:05:00.517,0:05:03.007 并进行适当的调整 0:05:03.684,0:05:07.107 怎么样? IV描述了一种连锁反应 0:05:07.641,0:05:10.343 为什么学校的录取会影响成绩? 0:05:10.343,0:05:13.256 可能是因为这影响了[br]特许学校的上学率 0:05:13.256,0:05:16.643 而特许学校的上学率[br]提高了数学成绩 0:05:16.643,0:05:20.645 连锁反应的第一个环节[br]称之为“第一阶段” 0:05:20.645,0:05:24.478 是抽签对特许学校上学率的影响 0:05:24.478,0:05:28.452 第二阶段是在特许学校就学 0:05:28.452,0:05:30.153 以及结果变量之间的关联 0:05:30.153,0:05:32.261 在这情况下,数学分数 0:05:32.732,0:05:36.441 工具变量或简称为“工具” 0:05:36.441,0:05:40.246 是启动链式反应的变量 0:05:40.979,0:05:43.993 工具变量对结果的影响 0:05:43.993,0:05:46.631 称为简化式 0:05:48.143,0:05:51.869 这个链式反应可以用数学表示 0:05:51.869,0:05:54.241 我们乘以第一阶段 0:05:54.241,0:05:56.349 即录取者对上学率的影响 0:05:56.349,0:05:57.960 到第二阶段 0:05:57.960,0:06:00.538 上学率对分数的影响 0:06:00.538,0:06:02.713 我们得到简化式 0:06:02.713,0:06:05.680 获录取对分数的影响 0:06:06.780,0:06:11.566 简化式和第一阶段是可观察的[br]并且易于计算 0:06:11.752,0:06:14.876 但是,上学率对成绩的影响 0:06:14.876,0:06:17.093 并未能直接观察到 0:06:17.093,0:06:20.360 这是我们试图确定的因果关系 0:06:21.043,0:06:23.827 考虑到我们将在稍后进行讨论的[br]一些重要假设 0:06:23.827,0:06:25.977 我们可以通过将简化式[br]除以第一阶段 0:06:25.977,0:06:29.265 来找出KIPP上学率的影响 0:06:29.265,0:06:32.910 通过示例,这点将会更加清楚 0:06:32.910,0:06:34.207 让我们开始吧 0:06:37.161,0:06:38.728 有关衡量的简短笔记 0:06:38.728,0:06:41.745 我们使用标准差来衡量成就 0:06:41.745,0:06:44.728 通常用希腊字母sigma (σ) 表示 0:06:44.728,0:06:48.862 一个σ是从大多数成就分配的[br]最低15% 0:06:48.862,0:06:51.634 到中间位置的巨大变化 0:06:51.634,0:06:55.412 甚至¼或½ σ 的差异也很大 0:06:56.262,0:06:58.389 现在我们准备将一些数字 0:06:58.389,0:07:01.655 插入到前面介绍的方程式中 0:07:01.655,0:07:03.231 首先,获录取对数学成绩 0:07:03.231,0:07:06.076 有何影响呢? 0:07:06.354,0:07:10.421 KIPP申请人的数学成绩是 0:07:10.421,0:07:11.835 申请KIPP之前一年中 0:07:11.835,0:07:14.386 低于州平均值的标准差的三分之一 0:07:14.386,0:07:18.320 但是一年后,获录取者得分[br]达到了州平均水平 0:07:18.320,0:07:21.482 而未被录取者 0:07:21.482,0:07:25.499 仍然落后于平均分数-0.36σ 0:07:25.834,0:07:29.619 获录取者对分数的影响[br]是获录取者的分数 0:07:29.619,0:07:32.819 与未被录取者的分数之间的差异 0:07:33.403,0:07:35.784 获录取者的平均数学成绩 0:07:35.784,0:07:38.269 减去未被录取者的平均数学成绩 0:07:38.269,0:07:41.502 你的答案是0.36σ 0:07:41.908,0:07:46.880 接下来:获录取对上学率[br]有什么影响呢? 0:07:46.880,0:07:49.193 换句话说,如果你获录取 0:07:49.193,0:07:52.257 与未被录取相比 0:07:52.257,0:07:53.456 你参加KIPP的可能性有多大? 0:07:53.671,0:07:57.798 首先,有多少百分比的获录取者[br]参加KIPP? 0:07:57.798,0:08:00.774 用参加KIPP的获录取者的人数 0:08:00.774,0:08:05.490 除以获录取者的总数—78% 0:08:05.810,0:08:09.331 要找出参加KIPP[br]而未被录取者的百分比 0:08:09.331,0:08:12.333 我们将参加KIPP的[br]未被录取者的人数 0:08:12.333,0:08:16.865 除以未被录取者的总数—即4% 0:08:17.377,0:08:21.597 从78减去4,我们发现获录取 0:08:21.597,0:08:25.600 会使你参加KIPP的可能性[br]提高了74% 0:08:25.946,0:08:28.532 现在我们可以找到真正想要的数据— 0:08:28.532,0:08:34.551 用0.36除以0.74[br]以得到上学率对分数的影响 0:08:34.789,0:08:37.585 参加KIPP可使数学成绩 0:08:37.585,0:08:41.606 平均提高了0.48个标准差 0:08:42.126,0:08:44.503 这是一项了不起的成就 0:08:44.503,0:08:47.380 等于从成就分布的底部三分之一 0:08:47.380,0:08:49.925 移到中间 0:08:49.925,0:08:51.085 哇,[听不见] 0:08:51.085,0:08:53.507 这些估算值适用于 0:08:53.507,0:08:54.781 选择参加KIPP抽签的学生 0:08:54.781,0:08:57.762 其注册状态因获录取而更改 0:08:57.985,0:09:00.617 这不一定是所有林恩学生的 0:09:00.617,0:09:02.283 随机样本 0:09:02.536,0:09:05.035 因此我们不能假设[br]我们会对其他类型的学生 0:09:05.035,0:09:07.327 看到相同的效果[br]- 嗯 0:09:07.327,0:09:10.218 但是这种对KIPP学生的[br]敏锐度的影响 0:09:10.218,0:09:13.367 可能很好地表明了 0:09:13.367,0:09:15.767 增加额外的特许学校学位的后果 0:09:15.767,0:09:17.216 - 很酷[br]- 知道了 0:09:19.628,0:09:23.352 IV消除了选择性偏差[br]但是像所有其他工具一样 0:09:23.352,0:09:25.624 这个解决方案建立在[br]一系列不应被视为 0:09:25.624,0:09:27.540 理所当然的假设的基础上 0:09:28.098,0:09:31.463 首先,第一阶段必须是实质性的 0:09:31.463,0:09:35.565 就是工具变量,获录取或未被录取 0:09:35.565,0:09:39.065 都必须真正改变了我们感兴趣的变量 0:09:39.065,0:09:41.031 这里就是KIPP上学率 0:09:41.298,0:09:44.594 在这情况下,第一阶段[br]并不是真的存在疑问 0:09:44.594,0:09:47.894 获录取会使KIPP上学率的可能性更大 0:09:48.386,0:09:50.631 并非所有IV故事都是这样的 0:09:51.321,0:09:53.698 其次,工具变量 0:09:53.698,0:09:54.931 必须和随机分配的一样好 0:09:54.931,0:09:58.716 意味着获录取者和未被录取者 0:09:58.893,0:10:01.559 这是独立性假设 0:10:01.977,0:10:05.716 当然,KIPP的获录取者[br]实际上是随机分配的 0:10:05.716,0:10:09.656 尽管如此,我们仍应检查[br]自己的平衡度 0:10:09.656,0:10:11.493 并确认获录取者及未被录取者 0:10:11.493,0:10:13.590 具有相似的家庭背景[br]相似的才能等 0:10:13.590,0:10:16.969 从本质上讲,我们正在检查[br]以确保KIPP录取的公平 0:10:16.969,0:10:20.055 获录取者没有可疑 0:10:21.373,0:10:24.373 最后,我们要求工具变量 0:10:24.373,0:10:26.092 仅会通过感兴趣的变量[br]来更改结果— 0:10:26.092,0:10:28.100 在这情况下,参加KIPP 0:10:28.299,0:10:31.367 这个假设称为“排斥限制” 0:10:32.951,0:10:37.500 仅当这三个假设都符合时[br]IV才有效 0:10:38.033,0:10:40.418 我不明白排斥限制 0:10:40.917,0:10:43.599 除了参加KIPP外 0:10:43.599,0:10:45.244 获录取还会如何影响数学成绩呢? 0:10:45.244,0:10:47.230 - 对啊[br]- 很好的问题 0:10:47.230,0:10:50.536 假设获录取者只是为了录取而兴奋 0:10:50.536,0:10:55.045 而这种幸福感促使他们[br]都会更努力学习及学习更多的数学 0:10:55.045,0:10:57.285 不管在哪间学校上学 0:10:57.285,0:10:59.901 这将违反“排斥限制” 0:10:59.901,0:11:03.787 因为获录取的动机是第二种渠道 0:11:03.787,0:11:06.569 获录取可能会影响考试成绩 0:11:06.865,0:11:09.546 虽然很难完全排除这个可能性 0:11:09.546,0:11:12.650 在KIPP研究中 0:11:12.650,0:11:14.108 没有其他渠道的证据 0:11:17.817,0:11:20.700 IV解决了诸如KIPP抽签之类的方案中的[br]选择性偏差问题 0:11:20.700,0:11:25.051 而是抽签是随机的 0:11:25.051,0:11:27.083 但其中一些选择退出 0:11:28.451,0:11:31.700 这种有意但不完整的随机分配 0:11:31.700,0:11:33.367 非常普遍 0:11:33.367,0:11:36.318 即使是随机临床试验也有这个功能 0:11:37.134,0:11:40.053 IV解决了抽奖或临床研究中 0:11:40.053,0:11:42.534 非随机占用的问题 0:11:43.054,0:11:46.725 但是抽奖并不是引人注目的[br]唯一工具变量 0:11:46.915,0:11:49.124 很多因果问题 0:11:49.124,0:11:50.758 可以通过自然发生 0:11:50.758,0:11:53.831 以及随机分配变量来解决 0:11:54.731,0:11:56.915 这里有一个因果问题: 0:11:56.915,0:11:59.450 在职业生涯早期生儿育女的女性 0:11:59.450,0:12:01.647 会否因此蒙受巨大收入损失吗? 0:12:02.648,0:12:04.970 毕竟,女性的收入低于男性 0:12:05.573,0:12:08.506 当然我们可以简单地 0:12:08.506,0:12:10.891 对养育较多或较少孩子的女性的收入[br]进行比较即可 0:12:10.891,0:12:14.190 但是,这样的比较充满了[br]选择性偏差 0:12:14.806,0:12:17.401 如果可以的话,我们可以[br]将婴儿随机 0:12:17.401,0:12:19.089 分配到不同的家庭 0:12:19.089,0:12:22.131 对啊,听起来不错 0:12:22.470,0:12:26.714 我们的下一个IV故事[br]—梦幻而不是幻想 0:12:26.714,0:12:30.234 将会描述一个适合家庭规模的 0:12:30.234,0:12:31.918 自然且神奇的工具变量 0:12:34.551,0:12:38.202 你正在掌握计量经济学 0:12:38.202,0:12:40.170 请回答一些练习问题 0:12:40.170,0:12:42.636 来确保记得这个视频的内容 0:12:42.886,0:12:46.336 或者,如果准备好了[br]请单击以观看下一个视频 0:12:46.529,0:12:50.204 你也可以访问MRU网站[br]以获取更多课程 0:12:50.204,0:12:52.027 教师资源等