1 00:00:00,000 --> 00:00:00,706 我们看到 2 00:00:00,706 --> 00:00:02,271 我们可以采取2个方程组 3 00:00:02,271 --> 00:00:04,466 包含2个未知数并展现 4 00:00:04,466 --> 00:00:07,799 矩阵A是左边部分的 5 00:00:07,799 --> 00:00:10,472 系数的矩阵方程 6 00:00:10,472 --> 00:00:12,349 列向量x 有两个 7 00:00:12,349 --> 00:00:14,749 未知数 s 和 t 8 00:00:14,749 --> 00:00:16,525 然后 列向量b 基本上 9 00:00:16,525 --> 00:00:19,209 展现了这里的右边部分 10 00:00:19,209 --> 00:00:20,326 有趣的是 11 00:00:20,326 --> 00:00:22,066 那就表示了方程A 12 00:00:22,066 --> 00:00:23,910 矩阵A 乘以 列向量x 13 00:00:23,910 --> 00:00:26,285 等于 列向量b 14 00:00:26,285 --> 00:00:27,890 有趣的是 15 00:00:27,890 --> 00:00:29,320 你看,假如 A 是可逆的 16 00:00:29,320 --> 00:00:33,011 我们就可以把方程的两边 17 00:00:33,011 --> 00:00:34,220 都乘以 18 00:00:34,220 --> 00:00:36,090 我们要把两边的左边部分 19 00:00:36,090 --> 00:00:38,120 都乘以 逆A 20 00:00:38,120 --> 00:00:39,558 因为,记住矩阵 21 00:00:39,558 --> 00:00:41,803 当矩阵乘法顺序很重要时 22 00:00:41,803 --> 00:00:43,591 我们要把两边的 23 00:00:43,591 --> 00:00:45,346 左边部分都乘以 24 00:00:45,346 --> 00:00:47,877 如果我们这么做了,我们基本上可以 25 00:00:47,877 --> 00:00:50,498 解开未知的列向量了 26 00:00:50,498 --> 00:00:52,229 如果我们知道列向量是什么了 27 00:00:52,229 --> 00:00:54,660 我们就可以解开 s 和 t 28 00:00:54,660 --> 00:00:55,980 我们就基本上解决了 29 00:00:55,980 --> 00:00:58,059 这个方程组 30 00:00:58,059 --> 00:00:59,593 让我们行动起来吧 31 00:00:59,593 --> 00:01:02,211 让我们真正弄清楚 逆A 是什么 32 00:01:02,211 --> 00:01:04,213 然后将那个乘以 列向量b 33 00:01:04,213 --> 00:01:06,660 为了找出 列向量x 34 00:01:06,660 --> 00:01:08,799 和 s 与 t 35 00:01:08,799 --> 00:01:14,181 逆A矩阵, 逆A等于 36 00:01:14,181 --> 00:01:16,527 1 除以 A的行列式 37 00:01:16,527 --> 00:01:20,451 2x2 的 A的行列式 38 00:01:20,451 --> 00:01:25,460 等于 2 乘 4 减 39 00:01:25,460 --> 00:01:27,096 -2 乘 -5 40 00:01:27,096 --> 00:01:31,239 这等于 8 减 正10... 41 00:01:31,239 --> 00:01:33,061 8 减 正10 42 00:01:33,061 --> 00:01:34,711 等于 -2 43 00:01:34,711 --> 00:01:37,970 这就会等于 -2 44 00:01:38,023 --> 00:01:40,794 再一次,2 乘 4 等于 8 减 45 00:01:40,794 --> 00:01:43,380 -2 乘 -5 46 00:01:43,380 --> 00:01:46,614 所以 减 正10 就得到了 -2 47 00:01:46,614 --> 00:01:48,797 你可以将 行列式 分之 1 48 00:01:48,797 --> 00:01:53,551 乘以 有时候被称之为A的伴随 49 00:01:53,551 --> 00:01:56,585 本质上就是交换左上角 50 00:01:56,585 --> 00:01:59,527 和右下角,起码 2x2 的矩阵是这样的 51 00:01:59,527 --> 00:02:02,321 这会是 4 52 00:02:02,321 --> 00:02:04,319 这会是 2 53 00:02:04,319 --> 00:02:05,600 注意 我只是把这两个换了位置 54 00:02:05,600 --> 00:02:06,971 然后 使这两个数字为负 55 00:02:06,971 --> 00:02:09,123 把原本的数字再一次变负 56 00:02:09,123 --> 00:02:10,599 这是负2 57 00:02:10,599 --> 00:02:12,181 会变成正2 58 00:02:12,181 --> 00:02:13,307 这边的这个 59 00:02:13,307 --> 00:02:14,917 会变成正5 60 00:02:14,917 --> 00:02:17,643 如果你完全和这些东西不熟悉 61 00:02:17,643 --> 00:02:19,554 你可以去复习一下教程 62 00:02:19,554 --> 00:02:21,373 关于反转矩阵 63 00:02:21,373 --> 00:02:23,920 因为那就是我在这里做的 64 00:02:23,920 --> 00:02:27,231 所以 逆A 会等于... 65 00:02:27,231 --> 00:02:30,600 逆A会等于 66 00:02:30,600 --> 00:02:34,400 让我看看,这是 -1/2 乘 4 67 00:02:34,400 --> 00:02:35,453 是 -2 68 00:02:35,453 --> 00:02:41,385 -1/2,-1/2 乘 5 69 00:02:41,385 --> 00:02:46,989 是 -2.5,-2.5 70 00:02:46,989 --> 00:02:51,490 然后 -1/2 乘 2 是 -1... 71 00:02:51,490 --> 00:02:53,860 -1/2 乘 2 是 -1 72 00:02:53,860 --> 00:02:55,666 所以这就是 逆A 73 00:02:55,666 --> 00:02:58,051 现在让我们把 逆A 乘以 74 00:02:58,051 --> 00:03:00,400 列向量,7,-6 75 00:03:00,400 --> 00:03:01,768 开解吧 76 00:03:01,768 --> 00:03:03,855 这是 逆A,我会写下来 77 00:03:03,855 --> 00:03:08,113 -2,-2.5,-1 78 00:03:08,113 --> 00:03:13,837 -1 乘 7 和 -6 79 00:03:13,837 --> 00:03:16,643 乘以,我会把它们全部用白色写下来 80 00:03:16,643 --> 00:03:17,758 7,-6 81 00:03:17,758 --> 00:03:22,541 我们有过很多矩阵乘法练习 82 00:03:22,541 --> 00:03:25,075 所以这会等于? 83 00:03:25,075 --> 00:03:26,800 第一项会是-2 84 00:03:26,800 --> 00:03:32,200 乘 7 等于 -14 加 85 00:03:32,200 --> 00:03:37,228 -2.5 乘 -6 86 00:03:37,228 --> 00:03:39,460 让我看看,这会是个正数 87 00:03:39,460 --> 00:03:42,431 这会是 12 加 3 88 00:03:42,431 --> 00:03:44,346 这等于 正15... 89 00:03:44,346 --> 00:03:46,383 正15 90 00:03:46,383 --> 00:03:48,567 -2.5 乘 -6 91 00:03:48,567 --> 00:03:50,811 等于 正15 92 00:03:50,811 --> 00:03:52,823 然后我们会有 -1 93 00:03:52,823 --> 00:03:56,366 乘 7 是 -7 加 94 00:03:56,366 --> 00:03:58,810 -1 乘 -6 95 00:03:58,810 --> 00:04:01,377 这是 正6 96 00:04:01,377 --> 00:04:05,210 逆A 和 b 的结果 97 00:04:05,210 --> 00:04:07,492 相同于 列向量x 98 00:04:07,492 --> 00:04:08,679 等于 99 00:04:08,679 --> 00:04:10,520 我们现在应该得到一点鼓声 100 00:04:10,520 --> 00:04:14,396 列向量 1,-1 101 00:04:14,396 --> 00:04:17,594 我们刚才证明了这等于 102 00:04:17,594 --> 00:04:20,929 1,-1 或者 x 等于 103 00:04:20,929 --> 00:04:22,532 1,-1 104 00:04:22,532 --> 00:04:26,571 或者我们甚至可以说这个列向量 105 00:04:26,571 --> 00:04:31,400 列向量st 106 00:04:31,400 --> 00:04:35,452 有 s 和 t 作为项的列向量 107 00:04:35,452 --> 00:04:41,986 等于1,-1... 108 00:04:41,986 --> 00:04:45,276 等于1,-1 109 00:04:45,276 --> 00:04:46,273 是另外一种说法 110 00:04:46,273 --> 00:04:47,930 那 s 等于 1 111 00:04:47,930 --> 00:04:50,091 和 t 等于 -1 112 00:04:50,091 --> 00:04:51,150 我知道你在说 113 00:04:51,150 --> 00:04:52,219 我在上一个视频里看到了 114 00:04:52,219 --> 00:04:53,488 那好吧,我就再说一次 115 00:04:53,488 --> 00:04:54,852 你就好像:“你知道么,这会简单很多 116 00:04:54,852 --> 00:04:56,795 如果你简单粗暴地解开它 117 00:04:56,795 --> 00:04:59,807 直接用消元法或者置换法。” 118 00:04:59,807 --> 00:05:04,590 我同意,不过这是个很有用的技巧 119 00:05:04,590 --> 00:05:06,344 因为当你正在解决 120 00:05:06,344 --> 00:05:08,805 计算法中的问题时,会有情况发生 121 00:05:08,805 --> 00:05:10,791 那组合的左边部分 122 00:05:10,791 --> 00:05:13,480 是一样的 123 00:05:13,480 --> 00:05:15,042 然而左边部分却可以有 124 00:05:15,042 --> 00:05:16,954 其他很多不一样的值 125 00:05:16,954 --> 00:05:19,106 可能会简单一点,如果你 126 00:05:19,106 --> 00:05:22,587 只计算一次逆矩阵,然后 127 00:05:22,587 --> 00:05:24,946 将其乘与 128 00:05:24,946 --> 00:05:28,565 不一样的右边部分 129 00:05:28,565 --> 00:05:30,812 你可能和其他类型已经熟悉了 130 00:05:30,812 --> 00:05:32,549 你有图形处理器 131 00:05:32,549 --> 00:05:34,280 电脑上的显卡 132 00:05:34,280 --> 00:05:36,460 和他们所说的特殊的图形处理器 133 00:05:36,460 --> 00:05:38,077 这些都是真正关于 134 00:05:38,077 --> 00:05:40,555 有着特殊目的的硬件 135 00:05:40,555 --> 00:05:44,160 为了很快的矩阵乘法 136 00:05:44,160 --> 00:05:46,233 因为当你在处理图形时 137 00:05:46,233 --> 00:05:47,544 当你在三次元里 138 00:05:47,544 --> 00:05:48,559 建模事物时 139 00:05:48,559 --> 00:05:50,067 你就是在做所有这些转变 140 00:05:50,067 --> 00:05:51,521 你真的只是在做很多 141 00:05:51,521 --> 00:05:53,965 特别,特别,特别快的矩阵乘法 142 00:05:53,965 --> 00:05:56,373 在实时的情况下,所以在用户玩游戏时 143 00:05:56,373 --> 00:05:58,160 或者做其他事情时 144 00:05:58,160 --> 00:05:59,516 这就好像他们在一种 145 00:05:59,516 --> 00:06:02,546 3D实时现实 146 00:06:02,546 --> 00:06:04,441 无论如何,我只想指出这一点 147 00:06:04,441 --> 00:06:08,659 这不会是,假如我随便看到了这个 148 00:06:08,659 --> 00:06:11,977 我的直觉会是用消元法解开这题 149 00:06:11,977 --> 00:06:15,610 不过有把这个想成矩阵方程的能力 150 00:06:15,610 --> 00:06:20,322 是特别,特别有用的概念 151 00:06:20,322 --> 00:06:21,920 不只是在计算法里 152 00:06:21,920 --> 00:06:25,240 当你接触到深层次的科学 153 00:06:25,240 --> 00:06:27,558 特别是物理,你会看到很多 154 00:06:27,558 --> 00:06:30,506 这样的矩阵向量方程 155 00:06:30,506 --> 00:06:32,036 那种笼统地说 156 00:06:32,036 --> 00:06:33,251 你要知道这很重要,关于 157 00:06:33,251 --> 00:06:35,188 他们实际上代表着什么 158 00:06:35,188 --> 00:06:37,950 以及他们到底怎样才能被解开