1 00:00:00,735 --> 00:00:01,806 Son videoda gördük ki, 2 00:00:01,806 --> 00:00:03,561 ikidəyişənli iki tənlikdən ibarət 3 00:00:03,561 --> 00:00:05,786 sistem götürüb onu matris tənliyi kimi 4 00:00:05,786 --> 00:00:09,119 ifadə edə bilərik. Burada A matrisi 5 00:00:09,119 --> 00:00:11,792 sol tərəfdəki əmsallardır. 6 00:00:11,792 --> 00:00:13,669 X sütun vektorunda 7 00:00:13,669 --> 00:00:16,610 iki dəyişən var, S və T. 8 00:00:16,610 --> 00:00:17,845 B sütun vektoru isə 9 00:00:17,845 --> 00:00:20,529 buradakı sağ tərəfi təmsil edir. 10 00:00:20,529 --> 00:00:21,646 Maraqlı olan budur ki, 11 00:00:21,646 --> 00:00:23,386 A tənliyi, A matrisi 12 00:00:23,386 --> 00:00:25,230 vur X vektoru 13 00:00:25,230 --> 00:00:27,605 B vektoruna bərabər olacaq. 14 00:00:27,605 --> 00:00:29,900 Burada maraqlı olan odur ki, A matrisinin 15 00:00:29,900 --> 00:00:30,640 tərsi varsa, 16 00:00:30,640 --> 00:00:34,331 biz tənliyin həm sol, həm də sa tərəfini 17 00:00:34,331 --> 00:00:35,540 vura bilərik. 18 00:00:35,540 --> 00:00:37,410 Onları müvafiq tərəflərinin solunda 19 00:00:37,410 --> 00:00:39,440 A matrisinin tərsi ilə vurmalıyıq. 20 00:00:39,440 --> 00:00:40,878 Çünki bunu xatırlayırıq. 21 00:00:40,878 --> 00:00:43,123 Matrisləri vurarkən sıra vacib olduqda 22 00:00:43,123 --> 00:00:44,911 tənliyin hər iki tərəfində 23 00:00:44,911 --> 00:00:46,666 sol tərəfləri çoxaldırıq. 24 00:00:46,666 --> 00:00:49,197 Bunu etsək, 25 00:00:49,197 --> 00:00:52,680 naməlum vektorun həllinə çatırıq. 26 00:00:52,680 --> 00:00:53,549 X vektorunu bilsək, 27 00:00:53,549 --> 00:00:55,980 S və T-nin nə olduğunu bilərik. 28 00:00:55,980 --> 00:00:57,300 Sonra biz bu tənliklər 29 00:00:57,300 --> 00:00:59,379 sistemini həll etmiş olacağıq. 30 00:00:59,379 --> 00:01:00,913 Gəlin, bunu edək. 31 00:01:00,913 --> 00:01:03,531 Gəlin A-nın tərsini tapaq və 32 00:01:03,531 --> 00:01:05,533 onu B vektorua vuraq. 33 00:01:05,533 --> 00:01:07,980 Bununla X vektorunu, 34 00:01:07,980 --> 00:01:10,119 S və T-ni tapacağıq. 35 00:01:10,119 --> 00:01:15,501 A-nın tərsi 36 00:01:15,501 --> 00:01:17,847 1 böl onun determinantına bərabərdir. 37 00:01:17,847 --> 00:01:21,771 2x2 ölçülü A-nın determinantı 38 00:01:21,771 --> 00:01:26,780 2 vur 4 çıx mənfi iki vur mənfi 5-ə 39 00:01:26,780 --> 00:01:28,416 bərabər olacaq. 40 00:01:28,416 --> 00:01:32,559 Bu 8 çıx müsbət 10 olacaq, 41 00:01:32,559 --> 00:01:34,381 8 çıx müsbət 10. 42 00:01:34,381 --> 00:01:36,031 Bu da mənfi ikiyə bərabəridir. 43 00:01:36,031 --> 00:01:39,290 Burada mənfi iki olacaq. 44 00:01:39,343 --> 00:01:42,114 Yenə: 2 vur 4 8-dir, çıx 45 00:01:42,114 --> 00:01:44,700 mənfi 2 vur mənfi 5 müsbət 10-dur. 46 00:01:44,700 --> 00:01:48,960 Cavab mənfi ikidir. 47 00:01:48,960 --> 00:01:50,117 48 00:01:50,117 --> 00:01:54,871 49 00:01:54,871 --> 00:01:57,905 50 00:01:57,905 --> 00:02:00,847 51 00:02:00,847 --> 00:02:03,641 52 00:02:03,641 --> 00:02:05,639 53 00:02:05,639 --> 00:02:06,920 54 00:02:06,920 --> 00:02:08,291 55 00:02:08,291 --> 00:02:10,443 56 00:02:10,443 --> 00:02:11,919 57 00:02:11,919 --> 00:02:13,501 58 00:02:13,501 --> 00:02:14,627 59 00:02:14,627 --> 00:02:16,237 60 00:02:16,237 --> 00:02:18,963 61 00:02:18,963 --> 00:02:21,530 62 00:02:21,530 --> 00:02:22,693 63 00:02:22,693 --> 00:02:25,240 64 00:02:25,240 --> 00:02:28,551 65 00:02:28,551 --> 00:02:31,920 66 00:02:31,920 --> 00:02:35,720 67 00:02:35,720 --> 00:02:36,773 68 00:02:36,773 --> 00:02:42,705 69 00:02:42,705 --> 00:02:48,309 70 00:02:48,309 --> 00:02:52,810 71 00:02:52,810 --> 00:02:55,180 72 00:02:55,180 --> 00:02:56,986 73 00:02:56,986 --> 00:02:59,371 74 00:02:59,371 --> 00:03:01,720 75 00:03:01,720 --> 00:03:03,710 76 00:03:03,710 --> 00:03:05,175 77 00:03:05,175 --> 00:03:09,433 78 00:03:09,433 --> 00:03:15,157 79 00:03:15,157 --> 00:03:17,963 80 00:03:17,963 --> 00:03:19,680 81 00:03:19,680 --> 00:03:23,861 82 00:03:23,861 --> 00:03:26,395 83 00:03:26,395 --> 00:03:28,120 84 00:03:28,120 --> 00:03:33,520 85 00:03:33,520 --> 00:03:38,548 86 00:03:38,548 --> 00:03:40,780 87 00:03:40,780 --> 00:03:43,751 88 00:03:43,751 --> 00:03:45,666 89 00:03:45,666 --> 00:03:47,703 90 00:03:47,703 --> 00:03:49,887 91 00:03:49,887 --> 00:03:52,131 92 00:03:52,131 --> 00:03:54,143 93 00:03:54,143 --> 00:03:57,686 94 00:03:57,686 --> 00:04:00,130 95 00:04:00,130 --> 00:04:02,697 96 00:04:02,697 --> 00:04:06,530 97 00:04:06,530 --> 00:04:08,812 98 00:04:08,812 --> 00:04:09,999 99 00:04:09,999 --> 00:04:11,840 100 00:04:11,840 --> 00:04:15,716 101 00:04:15,716 --> 00:04:18,914 102 00:04:18,914 --> 00:04:22,249 103 00:04:22,249 --> 00:04:23,852 104 00:04:23,852 --> 00:04:27,891 105 00:04:27,891 --> 00:04:32,720 106 00:04:32,720 --> 00:04:36,772 107 00:04:36,772 --> 00:04:43,306 108 00:04:43,306 --> 00:04:46,596 109 00:04:46,596 --> 00:04:47,593 110 00:04:47,593 --> 00:04:49,250 111 00:04:49,250 --> 00:04:51,411 112 00:04:51,411 --> 00:04:52,470 113 00:04:52,470 --> 00:04:53,539 114 00:04:53,539 --> 00:04:54,808 115 00:04:54,808 --> 00:04:56,172 116 00:04:56,172 --> 00:04:58,115 117 00:04:58,115 --> 00:05:01,127 118 00:05:01,127 --> 00:05:05,910 119 00:05:05,910 --> 00:05:07,664 120 00:05:07,664 --> 00:05:10,125 121 00:05:10,125 --> 00:05:12,111 122 00:05:12,111 --> 00:05:14,800 123 00:05:14,800 --> 00:05:16,362 124 00:05:16,362 --> 00:05:18,274 125 00:05:18,274 --> 00:05:20,426 126 00:05:20,426 --> 00:05:23,907 127 00:05:23,907 --> 00:05:26,266 128 00:05:26,266 --> 00:05:29,885 129 00:05:29,885 --> 00:05:32,132 130 00:05:32,132 --> 00:05:33,869 131 00:05:33,869 --> 00:05:35,600 132 00:05:35,600 --> 00:05:37,780 133 00:05:37,780 --> 00:05:39,397 134 00:05:39,397 --> 00:05:41,875 135 00:05:41,875 --> 00:05:45,480 136 00:05:45,480 --> 00:05:47,553 137 00:05:47,553 --> 00:05:48,864 138 00:05:48,864 --> 00:05:49,879 139 00:05:49,879 --> 00:05:51,387 140 00:05:51,387 --> 00:05:52,841 141 00:05:52,841 --> 00:05:55,285 142 00:05:55,285 --> 00:05:57,693 143 00:05:57,693 --> 00:05:59,480 144 00:05:59,480 --> 00:06:00,836 145 00:06:00,836 --> 00:06:03,866 146 00:06:03,866 --> 00:06:05,761 147 00:06:05,761 --> 00:06:09,979 148 00:06:09,979 --> 00:06:13,297 149 00:06:13,297 --> 00:06:16,930 150 00:06:16,930 --> 00:06:21,642 151 00:06:21,642 --> 00:06:23,240 152 00:06:23,240 --> 00:06:26,560 153 00:06:26,560 --> 00:06:28,878 154 00:06:28,878 --> 00:06:31,826 155 00:06:31,826 --> 00:06:33,356 156 00:06:33,356 --> 00:06:34,571 157 00:06:34,571 --> 00:06:36,508 158 00:06:36,508 --> 00:06:39,270