Alcuni anni fa cercavo di capire
se fosse possibile sviluppare i biocarburanti
a un livello tale da competere con i combustibili fossili,
ma senza competere con l'agricoltura per acqua,
fertilizzanti o terra.
Ecco cosa mi è venuto in mente.
Immaginate un bacino collocato appena sotto
la superficie dell'acqua, in cui immettere acque reflue
e alcuni tipi di microalghe che producono olio,
una struttura costruita con un tipo di materiale flessibile
che segue il moto ondoso;
il dispositivo che realizzeremo userà, naturalmente,
la luce solare per far crescere le alghe,
e queste assorbiranno CO2, il che è positivo,
e produrranno ossigeno man mano che crescono.
Il bacino in cui crescono le alghe
propaga calore alle acque circostanti,
e le alghe si possono utilizzare per biocarburanti,
cosmetici, fertilizzanti e mangimi.
Certo servirebbe una vasta area per la coltivazione,
il che interferirebbe con le attività
di pescatori, navi e simili. Ma attenzione,
stiamo parlando di biocarburanti,
e sappiamo quanto sia importante poter contare
su un combustibile liquido alternativo.
Perché abbiamo considerato le microalghe?
Qui vedete un grafico che mostra i diversi tipi
di colture attualmente impiegate per i biocarburanti.
Ci sono vegetali come la soia,
con una resa di 190 litri per ettaro all'anno,
o il girasole, la colza, la jatropha o la palma,
e il valore più alto è quello relativo alle microalghe.
Vale a dire, tra circa 7.500
e 19.000 litri per ettaro all'anno,
rispetto ai 190 litri per ettaro all'anno dalla soia.
Ma che sono le microalghe? Sono alghe microscopiche,
cioè sono estremamente piccole, e nella foto vedete
le dimensioni di questi organismi unicellulari
rispetto a un capello umano.
Questi piccoli organismi esistono
da milioni di anni, e ci sono migliaia
di specie diverse di microalghe in tutto il mondo,
con esemplari a maggiore velocità di crescita
di tutto il pianeta,
e che producono, come vi ho appena indicato,
tantissimo olio.
Ora, perché dovremmo utilizzare le coste?
Beh, il motivo è che, considerando l'ubicazione
delle nostre città costiere, non c'è altra scelta,
per via dell'impiego di acque reflue, come vi dicevo,
e la maggior parte degli impianti di depurazione
delle acque reflue si trovano nelle città costiere.
Questa è la città di San Francisco, che ha già 1450 km
di condotte fognarie
che riversano le acque reflue in mare.
Ogni città del mondo tratta le proprie acque reflue
in modo diverso. Alcune le filtrano.
Altre semplicemente le rilasciano.
Ma in ogni caso, l'acqua che fuoriesce
è l'ideale per la coltivazione di microalghe.
Ma vediamo come sarebbe un sistema del genere.
Noi lo chiamiamo OMEGA, acronimo di
*Offshore Membrane Enclosures for Growing Algae*.
Alla NASA bisogna ideare dei buoni acronimi.
Ma come funziona? Vi ho già dato qualche accenno.
Immettiamo acque reflue e prodotti che generano CO2
nella struttura galleggiante.
I liquami forniscono alle alghe i nutrienti per crescere,
e catturano la CO2 che altrimenti si disperderebbe
nell'atmosfera sotto forma di gas serra.
Utilizzano ovviamente luce solare per crescere,
e l'energia delle onde sulla superficie fornisce energia
per miscelare le alghe, e la temperatura
è controllata da quella dell'acqua circostante.
Le alghe che crescono producono ossigeno,
come ho già detto,
e producono anche biocarburanti, fertilizzanti, cibo
e altri prodotti pregiati.
Il sistema è confinato. Cosa intendo dire?
Che è modulare. Supponiamo che qualcosa
di totalmente inaspettato accada a uno dei moduli,
ad esempio una perdita o un fulmine.
Il liquame che fuoriesce si diffonde
nel vicino ambiente costiero;
e siccome le alghe che escono sono biodegradabili
e vivono nelle acque reflue,
sono di acqua dolce, il che significa che non possono
vivere in acqua salata, quindi muoiono.
La plastica utilizzata per la struttura
è un materiale che abbiamo ampiamente testato,
e nostri moduli saranno riutilizzabili.
Ma possiamo spingerci oltre
il tipo di sistema che vi sto mostrando,
bisogna concepirlo in termini di acqua, di acqua dolce,
che diventerà anche un problema in futuro,
e noi stiamo lavorando, oggi, su metodi
per il recupero delle acque reflue.
L'altra cosa da considerare è la struttura stessa,
che fornisce una superficie ad altri organismi;
e questa superficie, ricoperta di alghe marine
e di altri organismi acquatici,
diventerà un habitat marino migliorato
che aumenta la biodiversità.
Infine, essendo una struttura collocata in mare aperto,
possiamo pensare a come potrebbe contribuire
ad una attività di acquacoltura.
Probabilmente state pensando: "Accidenti,
sembra una buona idea.
Cosa possiamo fare per vedere se è fattibile?"
Beh, ho aperto dei laboratori a Santa Cruz
negli impianti della *California Fish and Game*;
lì ci hanno permesso di usare
grandi vasche di acqua di mare
per testare alcune di queste idee.
Abbiamo anche condotto esperimenti a San Francisco,
nella struttura di uno dei tre impianti di depurazione,
dove testare le nostre idee.
E, infine, volevamo capire
quale impatto avrebbe avuto questa struttura
sull'ambiente marino, e abbiamo attrezzato un sito
nella località detta *Moss Landing Marine Lab*
nella Baia di Monterey, una rada dove poter
verificare l'impatto sugli organismi marini.
Il laboratorio di Santa Cruz era il nostro centro
sperimentale.
Un posto dove coltivavamo le alghe,
saldavamo la plastica, costruivamo strumenti
e facevamo un sacco di errori,
o, per dirla con Edison, dove
cercavamo i 10.000 modi che avrebbero inceppato
il sistema.
Abbiamo coltivato alghe nelle acque reflue, realizzando strumenti
che ci permettevano di entrare nella vita delle alghe
per monitorare il modo in cui crescevano,
cosa le faceva star bene, e come garantire
la sopravvivenza e la prosperità delle colture.
I congegni più importanti da sviluppare sono stati
i cosiddetti fotobioreattori o PBR.
Erano strutture che galleggiavano in superficie,
fatte di un materiale plastico economico,
che avrebbero favorito la crescita delle alghe.
Abbiamo costruito un sacco di modelli,
molti dei quali sono stati dei terribili fallimenti,
e quando finalmente ne abbiamo fatto uno
che funzionava,
per circa 115 litri, l'abbiamo maggiorato
per 1700 litri a San Francisco.
Vi faccio vedere come funziona.
In pratica, prendiamo acque reflue con alghe selezionate
e le pompiamo attraverso questa struttura galleggiante,
questa struttura tubolare di plastica flessibile.
E queste circolano attraverso questa cosa,
e in superficie c'è ovviamente luce solare,
e le alghe crescono sui nutrienti.
Ma è un po' come infilare la testa
in un sacchetto di plastica.
Le alghe non soffocano per l'anidride carbonica,
come succederebbe a noi.
Soffocano perché producono ossigeno,
e in realtà non soffocano, ma l'ossigeno che producono
è problematico, e consumano tutta la CO2.
Il passo successivo è stato trovare il modo
per rimuovere l'ossigeno, conseguito grazie a questa
colonna
che pompa una parte dell'acqua
e restituisce la CO2 facendo gorgogliare il sistema
prima di rimettere l'acqua in circolazione.
Quello che vedete qui è il prototipo,
il primo tentativo di costruzione di questo tipo di colonna.
La colonna più grande che poi abbiamo montato
a San Francisco
nel sistema lì installato.
Un'altra caratteristica molto interessante di questa colonna
è che le alghe colonizzano la colonna,
e questo ci ha permesso di accumulare la biomassa algale
in un ambiente che ne facilitava la raccolta.
Abbiamo rimosso le alghe concentrate
sul fondo della colonna, e poi abbiamo raccolto il tutto
mediante una procedura con cui le alghe rimangono
in superficie e si possono rimuovere con una rete.
Volevamo anche studiare quale fosse l'impatto
di questo sistema sull'ambiente marino,
e come ho detto, abbiamo preparato l'esperimento
al *Moss Landing Marine Lab*.
Naturalmente, abbiamo trovato questo materiale
ricoperto di alghe, e bisognava sviluppare
una procedura per la pulizia. Abbiamo anche visto
come interagivano gli uccelli e i mammiferi marini.
Ecco qui una lontra marina che ha trovato il tutto incredibilmente interessante,
che periodicamente si faceva strada attraverso
il letto galleggiante, e avevamo pensato di utilizzarla
addestrandola a pulire la superficie
della struttura, ma è un progetto per il futuro.
Ora, in realtà
stavamo lavorando su quattro aree.
La nostra ricerca si è incentrata sulla biologia del sistema,
che comprendeva lo studio della crescita delle alghe,
ma anche della nutrizione e di ciò che le uccide.
Abbiamo fatto calcoli ingegneristici per stabilire
cosa servisse
per la costruzione di questa struttura,
non solo su piccola scala, ma anche
sull'enorme scala che alla fine sarà necessaria.
Ho già detto che abbiamo studiato gli uccelli
e i mammiferi marini,
l'impatto ambientale che avrà il sistema,
e, infine, gli aspetti economici,
e per economia intendo la quantità di energia
necessaria al funzionamento del sistema.
Si ottiene più energia dal sistema
di quanta se ne immette
per farlo funzionare?
E che dire dei costi operativi,
dell'investimento di capitale
e del costo dell'intera struttura economica?
Lasciatemi dire che non sarà facile.
C'è ancora molto lavoro da fare in queste quattro aree
per poter davvero far funzionare il sistema.
Ma non abbiamo tanto tempo, e vorrei mostrarvi
un'immagine di come potrebbe essere questo sistema
se ci trovassimo in una baia protetta
da qualche parte nel mondo; sullo sfondo vediamo
l'impianto di trattamento delle acque reflue
e una fonte di gas di scarico per la CO2,
ma se si valuta l'aspetto economico del sistema
si scopre che in realtà sarà difficile farlo decollare.
A meno che non venga visto come un modo
per trattare le acque reflue
e catturare anidride carbonica, e come piattaforma per l'energia fotovoltaica,
del moto ondoso o anche eolica.
Se si inizia a pensare all'integrazione
di tutte queste diverse attività,
si potrebbe anche includere l'acquacoltura.
In questo sistema avremmo l'acquacoltura
per l'allevamento di cozze o capesante,
ostriche e altri organismi
per il confezionamento di prodotti ad alto valore,
e questo sarebbe determinante per la realizzazione
di sistemi
sempre più grandi, così da renderli, infine,
più attraenti rispetto alla sola produzione di carburante.
Ma sorge sempre un grande dubbio,
per via della pessima reputazione dei rifiuti
di plastica in mare,
dunque abbiamo pensato alle possibilità di riciclo.
Cosa ci faremo con tutta quella plastica
che dovremo utilizzare nel nostro ambiente marino?
Beh, non so se lo sapete,
ma in California c'è una quantità enorme di plastica
che viene utilizzata in agricoltura come pacciame.
Sono teli di plastica che formano delle piccole serre
sulla superficie del suolo, che forniscono calore
al terreno prolungando la stagione di crescita,
limitano la crescita di erbe infestanti
e, naturalmente, ottimizzano l'irrigazione.
Il sistema OMEGA farà parte
di questo tipo di risultato, e quando avremo finito
di usarla nell'ambiente marino, si spera
che venga usata nei campi.
Dove lo collocheremo,
e che aspetto avrà in mare?
Ecco ciò che potremmo fare nella Baia
di San Francisco.
San Francisco produce circa 250 milioni di litri
di acque reflue al giorno.
Se immaginiamo un tempo di ritenzione di 5 giorni
per questo sistema, ci vorrebbe una capacità
di 1.250 milioni litri,
o l'equivalente di circa 520 ettari
di questi moduli OMEGA nella Baia
di San Francisco.
Beh, sarebbe meno dell'1%
della superficie della baia.
Produrrebbe circa 18.000 litri per ettaro all'anno,
quindi oltre 7,5 milioni di litri di carburante,
che è circa il 20% del biodiesel o del diesel
che sarebbe necessario a San Francisco,
e tutto questo senza lavorare sull'efficienza.
In quale altro luogo potremmo installare questo sistema?
Ci sono molte possibilità.
C'è, ovviamente, la Baia di San Francisco,
come ho già detto.
La baia di San Diego è un altro esempio,
la Mobile Bay o la Baia di Chesapeake, ma la realtà è che
con l'innalzamento del livello del mare, ci saranno
molte nuove opportunità da considerare. (Risate)
Vi sto parlando di un sistema
di attività integrate.
La produzione di biocarburanti è integrata
con l'energia alternativa
che a sua volta è integrata con l'acquacoltura.
Ho cercato di trovare una strada
per la produzione innovativa di biocarburanti sostenibili,
e lungo il percorso ho scoperto che
la cosa davvero necessaria
per la sostenibilità è l'integrazione
piuttosto che l'innovazione.
A lungo termine, ho grande fiducia
nella nostra ingegnosità collettiva e connettiva.
Penso che non ci sia quasi limite
a ciò che possiamo compiere
se siamo radicalmente aperti
e non ci importa a chi vada il credito.
Le soluzioni sostenibili ai nostri problemi futuri
saranno diverse
e saranno molteplici.
Penso che non possiamo tralasciare nulla,
nulla dall'Alfa all'Omega.
Grazie. (Applausi)
(Applausi)
Chris Anderson: Solo una domanda veloce, Jonathan.
Questo progetto può proseguire all'interno della NASA
o avete bisogno di un fondo per l'energia verde
abbastanza ambizioso per occuparsene?
Jonathan: La NASA ormai è entrata in una fase
in cui vorrebbe espandersi in qualcosa
che possa andare in mare, e ci sono molti ostacoli
burocratici negli Stati Uniti a causa delle licenze limitate
e il tempo richiesto per ottenere i permessi
per progetti in mare.
A questo punto c'è bisogno di persone esterne,
e noi siamo completamente disposti
a mettere questa tecnologia a disposizione
di chiunque sia interessato ad adottarla
e provi a trasformarla in realtà.
CA: Molto interessante. Non lo state brevettando.
Lo state pubblicando.
JT: Assolutamente.
CA: Va bene. Grazie mille.
JT: Grazie. (Applausi)