WEBVTT 00:00:00.440 --> 00:00:01.930 在这段视频中,我将向你们展示一种技巧 00:00:02.930 --> 00:00:09.310 叫做配方法。 00:00:09.310 --> 00:00:14.490 它的奇妙之处在于它适用于任何二次方程, 00:00:14.490 --> 00:00:18.210 它实际上是 00:00:18.210 --> 00:00:18.750 二次方程的基。 00:00:18.750 --> 00:00:21.990 在下个或者在那之后的视频, 00:00:21.990 --> 00:00:25.630 我会用配方法来证明这个二次公式。 00:00:25.630 --> 00:00:28.450 但在此之前,我们需要理解。 00:00:28.450 --> 00:00:29.470 它到底是怎么回事。 00:00:29.470 --> 00:00:32.070 这是建立在上一集视频基础上的, 00:00:32.070 --> 00:00:33.880 我们用完全平方 00:00:33.880 --> 00:00:36.130 求解了二次方程。 00:00:36.130 --> 00:00:39.900 已知二次方程x² - 4x 00:00:39.900 --> 00:00:44.880 等于5。 00:00:44.880 --> 00:00:47.490 我在这里放这么大的空间是有原因的。 00:00:47.490 --> 00:00:49.680 在上一集视频中,我们知道 00:00:49.680 --> 00:00:53.200 如果左边是完全平方, 00:00:53.200 --> 00:00:56.500 就可以很直接地求解出来。 00:00:56.500 --> 00:00:59.050 你看,配方就是把二次方程变成完全平方, 00:00:59.050 --> 00:01:01.900 对它进行工程处理, 00:01:01.900 --> 00:01:03.721 两边加减 00:01:03.721 --> 00:01:05.970 使它变成完全平方。 00:01:05.970 --> 00:01:07.710 我们该怎么做呢? 00:01:07.710 --> 00:01:10.130 为了使左边是完全平方的, 00:01:10.130 --> 00:01:12.990 这里必须有某个数。 00:01:12.990 --> 00:01:17.510 这里一定有某个数, 00:01:17.510 --> 00:01:20.910 如果我有这个数的平方, 00:01:20.910 --> 00:01:22.890 我用2乘以这个数,我得到-4。 00:01:22.890 --> 00:01:24.750 记住这一点, 00:01:24.750 --> 00:01:27.700 我想通过几个例子你就会明白。 00:01:27.700 --> 00:01:35.230 我想要x²- 4x 00:01:35.230 --> 00:01:37.740 加上某项等于x - a²。 00:01:37.740 --> 00:01:41.010 我们还不知道a是多少, 00:01:41.010 --> 00:01:42.110 但我们知道一些东西。 00:01:42.110 --> 00:01:46.180 当我平方时,这个等于 00:01:46.180 --> 00:01:49.330 x²- 2a + a²。 00:01:49.330 --> 00:01:53.640 如果你看这里的模式,它必须是 -- 00:01:53.640 --> 00:01:59.880 抱歉,x² - 2ax -- 这里必须是2ax。 00:01:59.880 --> 00:02:03.530 这里应该是a的平方。 00:02:03.530 --> 00:02:07.690 所以这个数,a是-4的一半, 00:02:07.690 --> 00:02:10.370 a是-2,对吧 00:02:10.370 --> 00:02:13.570 因为2乘以a等于-4。 00:02:13.570 --> 00:02:18.330 a是-2,如果a是-2,a的平方是多少? 00:02:18.330 --> 00:02:21.550 那么a的平方就是+4。 00:02:21.550 --> 00:02:24.220 现在你们可能觉得这些很复杂, 00:02:24.220 --> 00:02:25.910 但是我给你们展示的是基本原理。 00:02:25.910 --> 00:02:29.080 你只需要看这里的系数, 00:02:29.080 --> 00:02:32.670 好,系数的一半是多少? 00:02:32.670 --> 00:02:35.920 系数的一半是-2。 00:02:35.920 --> 00:02:40.230 所以我们可以说a等于-2,同样的, 00:02:40.230 --> 00:02:41.720 然后平方。 00:02:41.720 --> 00:02:44.100 对a平方,得到正4。 00:02:44.100 --> 00:02:46.540 所以这里加上4。 00:02:46.540 --> 00:02:47.630 加4。 00:02:47.630 --> 00:02:50.990 从我们做过的第一个方程, 00:02:50.990 --> 00:02:55.240 你应该知道 00:02:55.240 --> 00:02:55.900 不能只在方程的一边运算。 00:02:55.900 --> 00:02:58.700 不能只在等式的一边加上4。 00:02:58.700 --> 00:03:02.710 如果x²- 4x = 5,那么当我加4时, 00:03:02.710 --> 00:03:04.720 它就不再等于5了。 00:03:04.720 --> 00:03:07.950 这将会是5 + 4。 00:03:07.950 --> 00:03:11.430 我们在左边加了4, 00:03:11.430 --> 00:03:12.435 因为我们想让它是一个完全平方。 00:03:12.435 --> 00:03:15.210 但是如果你在左边加上某项, 00:03:15.210 --> 00:03:17.320 你必须在右边加上它。 00:03:17.320 --> 00:03:20.630 现在,我们遇到了一个 00:03:20.630 --> 00:03:23.410 和上个视频中做的问题一样的问题。 00:03:23.410 --> 00:03:25.960 左边是什么? 00:03:25.960 --> 00:03:27.000 我把整个式子重写一下。 00:03:27.000 --> 00:03:33.020 我们现在得到x² - 4x + 4 = 9。 00:03:33.020 --> 00:03:35.380 我们所做的就是方程两边同时加上4。 00:03:35.380 --> 00:03:39.070 但是我们为了左边变成完全平方, 00:03:39.070 --> 00:03:41.080 而加上了4。 00:03:41.080 --> 00:03:41.760 这是什么? 00:03:41.760 --> 00:03:45.340 什么数乘以它本身等于4? 00:03:45.340 --> 00:03:47.770 而当我把它自身相加等于-2? 00:03:47.770 --> 00:03:49.000 我们已经回答了这个问题。 00:03:49.000 --> 00:03:50.040 它是- 2。 00:03:50.040 --> 00:03:55.310 我们得到(x - 2)(x - 2) = 9。 00:03:55.310 --> 00:03:59.350 或者我们可以跳过这一步 00:03:59.350 --> 00:04:02.990 写成(x - 2)² = 9。 00:04:02.990 --> 00:04:07.280 然后两边同时开根号, 00:04:07.280 --> 00:04:10.840 就得到x - 2 = ±3。 00:04:10.840 --> 00:04:16.870 两边同时加上2,就得到x = 2 ± 3。 00:04:16.870 --> 00:04:22.440 这告诉我们x可以等于2 + 3,也就是5。 00:04:22.440 --> 00:04:28.960 或者x可以等于2 - 3,也就是-1。 00:04:28.960 --> 00:04:30.650 我们完成了。 00:04:30.650 --> 00:04:31.840 现在我想说明一下。 00:04:31.840 --> 00:04:34.300 你可以完成这个方程而不用配方法。 00:04:34.300 --> 00:04:37.640 我们可以从 00:04:37.640 --> 00:04:39.850 x²- 4x = 5开始。 00:04:39.850 --> 00:04:42.970 我们可以两边同时减去5, 00:04:42.970 --> 00:04:47.160 得到x² - 4x - 5 = 0。 00:04:47.160 --> 00:04:51.940 你可以这样想, 00:04:51.940 --> 00:04:56.190 如果我有一个-5乘以1,那么它们的乘积是-5, 00:04:56.190 --> 00:04:57.000 它们的和是-4。 00:04:57.000 --> 00:05:00.800 所以我可以说这是 00:05:00.800 --> 00:05:02.480 (x - 5)(x + 1) = 0。 00:05:02.480 --> 00:05:06.810 然后我们说x等于5 00:05:06.810 --> 00:05:07.700 或者x等于-1。 00:05:07.700 --> 00:05:10.350 在这种情况下, 00:05:10.350 --> 00:05:13.450 实际上可能有更快的解题方法。 00:05:13.450 --> 00:05:16.140 但是配方法的奇妙之处 00:05:16.140 --> 00:05:17.770 就在于它总是有效的。 00:05:17.770 --> 00:05:21.580 它总是有效的,不管系数是多少, 00:05:21.580 --> 00:05:23.385 不管问题有多复杂。 00:05:23.385 --> 00:05:25.400 我来证明一下。 00:05:25.400 --> 00:05:28.440 我们来做一个 00:05:28.440 --> 00:05:31.140 传统上会很麻烦的问题, 00:05:31.140 --> 00:05:36.200 如果我们试着做分解,特别是用分组 00:05:36.200 --> 00:05:37.020 就像这样。 00:05:37.020 --> 00:05:45.070 假设我们现在有 00:05:45.070 --> 00:05:47.530 10x² - 30x - 8 = 0。 00:05:47.530 --> 00:05:50.060 现在,从一开始, 00:05:50.060 --> 00:05:53.280 我们可以两边除以2。 00:05:53.280 --> 00:05:54.800 这确实简化了一点。 00:05:54.800 --> 00:05:56.450 我们两边同时除以2。 00:05:56.450 --> 00:06:02.150 如果把所有数都除以2,会得到什么? 00:06:02.150 --> 00:06:11.990 我们得到5x² - 15x - 4 = 0。 00:06:11.990 --> 00:06:14.540 但是同样的,现在系数前面有一个疯狂的5, 00:06:14.540 --> 00:06:16.810 我们必须通过分组来解决它。 00:06:16.810 --> 00:06:20.410 这是一个相当痛苦的过程。 00:06:20.410 --> 00:06:23.410 但现在我们可以直接完成这个配方, 00:06:23.410 --> 00:06:27.500 为了完成这个, 00:06:27.500 --> 00:06:28.870 我现在要除以5得到1的系数。 00:06:28.870 --> 00:06:31.660 你们会看到为什么 00:06:31.660 --> 00:06:33.010 这和我们传统的做法不同。 00:06:33.010 --> 00:06:35.730 如果我把这整个除以5, 00:06:35.730 --> 00:06:38.050 我可以从一开始就除以10, 00:06:38.050 --> 00:06:40.030 但我想先做这个,只是为了让你们知道 00:06:40.030 --> 00:06:41.800 题目并没有告诉我们多少。 00:06:41.800 --> 00:06:43.660 所有项都除以5。 00:06:43.660 --> 00:06:52.693 如果每项都除以5, 00:06:52.693 --> 00:06:58.720 就得到x² - 3x - 4/5 = 0。 00:06:58.720 --> 00:07:02.020 你可能会问, 00:07:02.020 --> 00:07:02.630 为什么我们要用分组来分解呢? 00:07:02.630 --> 00:07:06.140 00:07:06.140 --> 00:07:07.220 00:07:07.220 --> 00:07:09.840 00:07:09.840 --> 00:07:10.910 00:07:10.910 --> 00:07:14.410 00:07:14.410 --> 00:07:17.630 00:07:17.630 --> 00:07:19.500 00:07:19.500 --> 00:07:22.100 00:07:22.100 --> 00:07:25.210 00:07:25.210 --> 00:07:26.140 00:07:26.140 --> 00:07:29.310 00:07:29.310 --> 00:07:36.860 00:07:36.860 --> 00:07:42.080 00:07:42.080 --> 00:07:44.720 00:07:44.720 --> 00:07:45.950 00:07:45.950 --> 00:07:48.080 00:07:48.080 --> 00:07:50.040 00:07:50.040 --> 00:07:53.880 00:07:53.880 --> 00:07:56.900 00:07:56.900 --> 00:07:59.980 00:07:59.980 --> 00:08:01.160 00:08:01.160 --> 00:08:04.010 00:08:04.010 --> 00:08:05.250 00:08:05.250 --> 00:08:08.350 00:08:08.350 --> 00:08:11.800 00:08:11.800 --> 00:08:13.660 00:08:13.660 --> 00:08:17.790 00:08:17.790 --> 00:08:19.990 00:08:19.990 --> 00:08:23.350 00:08:23.350 --> 00:08:24.740 00:08:24.740 --> 00:08:28.360 00:08:28.360 --> 00:08:30.110 00:08:30.110 --> 00:08:32.309 00:08:32.309 --> 00:08:35.330 00:08:35.330 --> 00:08:37.370 00:08:37.370 --> 00:08:39.554 00:08:39.554 --> 00:08:44.840 00:08:44.840 --> 00:08:48.380 00:08:48.380 --> 00:08:54.100 00:08:54.100 --> 00:08:56.810 00:08:56.810 --> 00:08:58.010 00:08:58.010 --> 00:09:00.720 00:09:00.720 --> 00:09:02.920 00:09:02.920 --> 00:09:05.530 00:09:05.530 --> 00:09:06.600 00:09:06.600 --> 00:09:11.030 00:09:11.030 --> 00:09:13.850 00:09:13.850 --> 00:09:22.530 00:09:22.530 --> 00:09:24.460 00:09:24.460 --> 00:09:29.120 00:09:29.120 --> 00:09:31.880 00:09:31.880 --> 00:09:33.820 00:09:33.820 --> 00:09:36.960 00:09:36.960 --> 00:09:42.150 00:09:42.150 --> 00:09:44.970 00:09:44.970 --> 00:09:47.020 00:09:47.020 --> 00:09:48.930 00:09:48.930 --> 00:09:50.380 00:09:50.380 --> 00:09:53.420 00:09:53.420 --> 00:09:55.780 00:09:55.780 --> 00:09:59.750 00:09:59.750 --> 00:10:02.680 00:10:02.680 --> 00:10:09.480 00:10:09.480 --> 00:10:11.030 00:10:11.030 --> 00:10:13.630 00:10:13.630 --> 00:10:15.970 00:10:15.970 --> 00:10:21.610 00:10:21.610 --> 00:10:24.200 00:10:24.200 --> 00:10:27.590 00:10:27.590 --> 00:10:32.790 00:10:32.790 --> 00:10:37.960 00:10:37.960 --> 00:10:43.090 00:10:43.090 --> 00:10:47.820 00:10:47.820 --> 00:10:53.320 00:10:53.320 --> 00:10:57.640 00:10:57.640 --> 00:11:03.600 00:11:03.600 --> 00:11:07.300 00:11:07.300 --> 00:11:09.290 00:11:09.290 --> 00:11:11.430 00:11:11.430 --> 00:11:15.250 00:11:15.250 --> 00:11:17.260 00:11:17.260 --> 00:11:18.510 00:11:20.620 --> 00:11:22.510 00:11:25.950 --> 00:11:28.760 00:11:28.760 --> 00:11:33.710 00:11:33.710 --> 00:11:35.050 00:11:35.050 --> 00:11:46.480 00:11:46.480 --> 00:11:52.760 00:11:52.760 --> 00:12:02.230 00:12:02.230 --> 00:12:03.110 00:12:03.110 --> 00:12:06.710 00:12:06.710 --> 00:12:09.180 00:12:09.180 --> 00:12:11.535 00:12:11.535 --> 00:12:12.465 00:12:12.465 --> 00:12:16.130 00:12:16.130 --> 00:12:23.400 00:12:23.400 --> 00:12:27.970 00:12:27.970 --> 00:12:33.800 00:12:33.800 --> 00:12:38.200 00:12:38.200 --> 00:12:39.360 00:12:39.360 --> 00:12:42.050 00:12:42.050 --> 00:12:43.840 00:12:47.400 --> 00:12:50.130 00:12:50.130 --> 00:12:51.760 00:12:51.760 --> 00:12:54.160 00:12:54.160 --> 00:12:55.160 00:12:55.160 --> 00:13:00.090 00:13:00.090 --> 00:13:02.380 00:13:02.380 --> 00:13:11.975 00:13:11.975 --> 00:13:16.030 00:13:16.030 --> 00:13:18.490 00:13:18.490 --> 00:13:21.860 00:13:21.860 --> 00:13:22.880 00:13:22.880 --> 00:13:24.910 00:13:24.910 --> 00:13:28.930 00:13:28.930 --> 00:13:32.240 00:13:32.240 --> 00:13:34.980 00:13:34.980 --> 00:13:37.100 00:13:37.100 --> 00:13:38.870 00:13:38.870 --> 00:13:41.060 00:13:41.060 --> 00:13:43.550 00:13:43.550 --> 00:13:46.480 00:13:46.480 --> 00:13:49.050 00:13:49.050 --> 00:13:52.390 00:13:52.390 --> 00:13:55.300 00:13:55.300 --> 00:13:56.160 00:13:56.160 --> 00:13:58.670 00:13:58.670 --> 00:14:01.510 00:14:01.510 --> 00:14:03.610