1 00:00:00,720 --> 00:00:03,926 这里。我们有一个三角形 ABC,看着像一个直角三角形。 2 00:00:03,926 --> 00:00:05,300 我们知道,它是一个直角三角形, 3 00:00:05,300 --> 00:00:08,720 因为 3的平方加上4 的平方等于 5 的平方。 4 00:00:08,720 --> 00:00:12,050 题目要求我们求出 5 00:00:12,050 --> 00:00:12,970 角ABC 的2倍的余弦是什么。 6 00:00:12,970 --> 00:00:16,620 这是角 ABC, 7 00:00:16,620 --> 00:00:18,850 我们不能马上给出它的值, 8 00:00:18,850 --> 00:00:22,400 但是我们知道角ABC 的余弦是什么, 9 00:00:22,400 --> 00:00:27,810 我们知道,角ABC 的余弦-- 10 00:00:27,810 --> 00:00:29,680 余弦就是邻边除以斜边。 11 00:00:29,680 --> 00:00:32,159 它就等于 3/5。 12 00:00:32,159 --> 00:00:39,700 类似,我们知道角ABC的正弦是什么, 13 00:00:39,700 --> 00:00:41,530 它是对边除以斜边, 14 00:00:41,530 --> 00:00:43,310 它就是4/5。 15 00:00:43,310 --> 00:00:46,200 如果我们能把它分解为角 ABC 的余弦 16 00:00:46,200 --> 00:00:49,120 和正弦,那我们就能得到它的值。 17 00:00:49,120 --> 00:00:52,340 幸运的是,我们有一个三角恒等式 18 00:00:52,340 --> 00:00:55,410 正好能解决问题。 19 00:00:55,410 --> 00:01:00,310 我们知道一个角的2倍的余弦 20 00:01:00,310 --> 00:01:03,390 等于这个角的余弦的平方 21 00:01:03,390 --> 00:01:05,560 减去这个角的正弦的平方。 22 00:01:05,560 --> 00:01:07,710 23 00:01:07,710 --> 00:01:10,040 24 00:01:10,040 --> 00:01:13,545 25 00:01:13,545 --> 00:01:15,560 26 00:01:15,560 --> 00:01:21,460 27 00:01:21,460 --> 00:01:23,670 28 00:01:23,670 --> 00:01:25,810 29 00:01:25,810 --> 00:01:27,360 30 00:01:27,360 --> 00:01:30,310 31 00:01:30,310 --> 00:01:40,480 32 00:01:40,480 --> 00:01:42,050 33 00:01:45,770 --> 00:01:47,740 34 00:01:47,740 --> 00:01:52,060 35 00:01:52,060 --> 00:01:55,470 36 00:01:55,470 --> 00:01:57,320 37 00:01:57,320 --> 00:01:58,640 38 00:01:58,640 --> 00:02:01,740 39 00:02:01,740 --> 00:02:05,590 40 00:02:05,590 --> 00:02:14,120 41 00:02:14,120 --> 00:02:17,320 42 00:02:21,515 --> 00:02:22,015 43 00:02:22,015 --> 00:02:23,021 44 00:02:23,021 --> 00:02:24,020 45 00:02:24,020 --> 00:02:27,010 46 00:02:27,010 --> 00:02:29,299 47 00:02:29,299 --> 00:02:30,840 48 00:02:30,840 --> 00:02:33,370 49 00:02:33,370 --> 00:02:36,260 50 00:02:36,260 --> 00:02:38,852 51 00:02:38,852 --> 00:02:41,310 52 00:02:41,310 --> 00:02:45,910 53 00:02:45,910 --> 00:02:49,080 54 00:02:49,080 --> 00:02:49,830 55 00:02:49,830 --> 00:02:50,740 56 00:02:50,740 --> 00:02:52,830 57 00:02:52,830 --> 00:02:54,430 58 00:02:54,430 --> 00:02:57,340 59 00:02:57,340 --> 00:03:01,775 60 00:03:04,380 --> 00:03:06,610 61 00:03:06,610 --> 00:03:08,940 62 00:03:08,940 --> 00:03:11,640 63 00:03:11,640 --> 00:03:15,965 64 00:03:15,965 --> 00:03:18,090 65 00:03:18,090 --> 00:03:21,850 66 00:03:21,850 --> 00:03:23,520 67 00:03:23,520 --> 00:03:26,667